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Radar: RAdio Detection And Ranging

Need a directional radio beam

Measure time between transmit pulse and receive pulse

Find Distance: Divide speed of light by interval time
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Radar Band (Frequency) Terminology

Radar Band Frequency (GHz) Wavelength (cm) 

Millimeter 40 to 100 0.75 to 0.30  

Ka 26.5 to 40 1.1 to 0.75 

K 18 to 26.5 1.7 to 1.1 

Ku 12.5 to 18 2.4 to 1.7 

X 8 to 12.5 3.75 to 2.4 

C 4 to 8 7.5 to 3.75 

S 2 to 4 15 to 7.5 

L 1 to 2 30 to 15 

UHF 0.3 to 1 100 to 30 

 

Radar Band often dictated by antenna size requirements

λ = v / f where

f = wave frequency (Hz or cycles per second)

λ = wavelength (centimeters)

v = speed of light (approximately 3 x 1010 centimeters/second)
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Radar Range Equation

Receiver Power Preceive = Pt Gt Ar σ F4 (tpulse/ T) / ((4π)2 R4 )  

where

Pt = transmitted power

Gt = antenna transmit gain

Ar = Receive antenna aperture area

σ = radar cross section (function of target geometric cross 

section, reflectivity of surface, and directivity of reflections)    

F = pattern propagation factor (unity in vacuum, accounts for 

multi-path, shadowing and other factors)

tpulse = duration of receive pulse

T = duration of transmit interval

R = range between radar and target
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Transmit Pulse Repetition Frequency (PRF) 

§ From 100s of Hz to 100s of kHz

§ Can cause range “ambiguities” if too fast

 

0 us 

0 km 
100 us 

15 km 

200 us 

30 km 

100 range bins 

Increasing range and return echo time → 

Aliasing of return to shorter range 

Assume PRF of 10 kHz   (100 us), therefore

Rmaximum = (3x108 m/sec) (100x10-6 sec) / 2 = 15 km

Target 1 at 5 km range: tdelay = 2 Rmeasured / vlight = 2 (5x103 ) / 3x108 = 33 us

Target 2 at 21 km range: tdelay = 2 Rmeasured / vlight = 2 (21x103 ) / 3x108 = 140 us
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Doppler concept – frequency shift 

through motion
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Doppler effect

Frequency shift in received pulse: fDoppler =  2 vrelative / λ

Example: assume X band radar operating at 10 GHz  (3 cm wavelength) 

Airborne radar traveling at  500 mph

Target 1 traveling away from radar at 800 mph

Vrelative = 500 – 800 = -300 mph = -134 meter/s

Target 2 traveling towards radar at 400 mph

Vrelative = 500 + 400 = 900 mph = 402 meter/s

First target Doppler shift = 2 (-134m/s) / (0.03m) = - 8.93 kHz

Second target Doppler shift = 2 (402m/s) / (0.03m) = 26.8 kHz
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Frequency Spectrum of Pulse

Spectrum of single pulse

Spectrum of slowly 

repeating pulse (low PRF)

Spectrum of rapidly 

repeating pulse (high PRF)

Line spacing equal to PRF
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Doppler Ambiguities

Radar–bearing aircraft maximum speed: 1200 mph = 536 m/s

Target aircraft maximum speed 1200 mph = 536 m/s

Maximum positive Doppler = 2 (1072m/s) / (0.03m) = 71.5 kHz

Radar–bearing aircraft minimum speed: 300 mph = 134 m/s

Effective radar–bearing aircraft minimum speed with θ = 30 degree angle from 

target track is sin(30) = 0.5  150 mph = 67 m/s

Target aircraft maximum speed 1200 mph = 536 m/s

Maximum negative Doppler = 2 (67-536 m/s) / (0.03m) = -31.3 kHz
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Critical Choice of PRF

§ Low PRF: generally 1-8 kHz
§ Good for maximum range detection

§ Requires long transmit pulse duration to achieve adequte transmit 
power – means more pulse compression 

§ Excessive Doppler ambiguity

§ Difficult to reject ground clutter in main antenna lobe

§ Medium PRF: generally 8-30 kHz
§ Compromise: get both range and Doppler ambiguities, but less severe

§ Good for scanning – use other PRF for precise range or for isolating 
fast moving targets from clutter

§ High PRF: generally 30-250 kHz
§ Moving target velocity measurement and detection

§ Allows highest transmit power → greater detection ranges

§ FFT → Spectral masking → IFFT → detection processing
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Using both Range and Doppler detection

 

Range Return 

Doppler Return 

Main Lobe Beam 
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range or 
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ambiguities
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Doppler Pulse Processing Basics

n Form L range bins in fast time

n Perform FFT across N pulse intervals for each of L ranges

n Doppler filter into K frequency bins

n Coherent processing interval (CPI) of N radar pulses 

n Target discrimination in both range and Doppler frequency
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STAP Algorithm
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MTI Detection among clutter, jamming

§ Pulse Compression – matched filtering to optimize 
SINR

§ MTI filtering – for gross clutter removal

§ Pulse Doppler filtering – effective to resolve targets 
with significant motion from clutter 

§ STAP – temporal and spatial filtering to separate 
slow moving targets from clutter and null jammers
§ Very high processing requirements

§ Low latency, fast adaptation

§ Dynamic range requires floating point processing 
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Target Detection with Spatial Dimension

n Jammer is across all Doppler bins

n Target is same angle as main clutter

n Target is close to clutter Doppler frequency

n Spatial and Temporal filtering needed to discriminate

Normalized 

Doppler 

Frequency

Angle of arrival
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Beamforming using ESA

n Each T/R module sample multiplied by complex value Am

n Am = e -2πd·m·sin(θ/λ) for m = 1..M-1, for each angle θ

n Main lobe shape, side lobe height can be adjusted by multiplying angle 

vector with tapering window – similar to FIR filter coefficients

n All complex receive samples sum/split for single feed to/from processor 

n Angular steering, determined by vector A
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Add Spatial dimension: Radar “Datacube”

n M sub-array weighted samples (no longer summed into single feed)

n L sampling intervals per pulse interval (fast time)

n CPI of N radar pulses (slow time)

n Doppler pulse processing across L & N dimensions

n STAP processing across M & N dimensions
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Target steering vector t = f (angle, Doppler)

n Temporal Steering Vector Fd for each Doppler frequency Fdoppler

n Fd = e -2π·n·F
dopp for n = 1..N-1 

n A θ = e -2πd·m·sin(θ/λ) for m = 1..M-1, for given angle of arrival θ

n t = Fd O A θ, Kronecker product of target Doppler and Steering vectors

t

(M long vector)

A θ = e -2πd·m·sin(θ/λ)

t is vector of length N · M

e -2π·0·F
dopp  X

e -2π·n·F
dopp  X

e -2π·(N-1)·F
dopp  X

·

·

·

·

·

·

where
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Computing Interference Covariance Matrix

y
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·

·
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Bin k
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time

SI = y* · yT (vector cross product)

y is column vector of length N·M, so SI is (N·M) x (N·M) size 

SInterference = Snoise + Sjammer + Sclutter and is hermitian

where Snoise = σ2 · I, Sjammer is block diagonal matrix, Sclutter depends upon environment
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Estimate SI using neighboring bins

n SI is calculated for each neighboring range bin

n Do not want target information in covariance matrix, so estimate SI in 

kth bin by averaging, element by element, nearby SI matrices

n Orange range cell k contains suspected target under test
Red range cells are guard bands 

Assume nearby bins have same clutter statistics as orange cell

Use the nearby cells to for estimate of SI to use in STAP algorithm

N-10
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time

(N·M) x (N·M) 

size matrices
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Calculate weight vector to maximize SIR

n Calculate optimal weighting vector h = k · SI
-1 · t*

k is scalar constant, SI is interference covariance matrix, t is target steering vector

n Then find z = hT · y, where y is output from bin k of radar cube data

n z(Fdoppler, θ) is then subject to target threshold detection process
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Using QRD to find weighting vector h

§ h = k · SI
-1 · t* (h is M·N long vector)

§ SI · u = t*, where u includes scaling constant k

§ Q · R · u = t*, where Q · QH = I and Q-1 = QH

§ Q is constructed of orthogonal normalized vectors

§ R will become upper triangular

§ R · u = QH · t*

§ Solve for vector u using back substitution

§ h = u / (tH· u*) ( k = tH· u* )

§ z = hT · y  gives optimal output detection result
where z is a complex scalar 
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STAP using covariance matrix summary

§ For each range bin of interest:
§ Compute covariance matrix for each range bin 

§ Estimate interference covariance matrix SI by averaging the 
surrounding covariance matrices

§ Perform QRD upon SI

§ Then for each Fdoppler and Aθ of interest:
§ Compute QH · t* 

§ R · u = QH · t* → find u with back substitution

§ Compute h = u / (tH· u*)

§ Final result z = hT · y

§ This is known as power domain method
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Example GFLOPs estimate (power domain)

§ Process over 12 Aθ , 16 Fdoppler and assume 
prosecute 32 target steering vectors

§ Use 10 range bins with a PRF = 1 kHz 
§ Compute Covariance Matrix 1.1 GFLOPS

§ Average over 10 covariance matrices 0.4 GFLOPs

§ QR Decomposition 37.7  GFLOPs

§ Compute QH · t* (each Aθ and Doppler) 9.4 GFLOPs 

§ Solve for u using back substitution 4.7 GFLOPs 

§ Compute h = u / (tH· u*) and z = hT · y 0.2 GFLOPS

§ Total 53.5 GFLOPs

§ Detection for 8 possible targets over 4 possible 
velocities over narrow angle and Doppler, low PRF 
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Alternate method
“voltage domain”
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STAP using radar cube data directly
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§ Operate directly on y data vectors
§ One vector y per range bin

§ Use Ls range bins , where Ls > M·N range bins 

§ Construct matrix Y = [y0 y1 y2 ….. yLs-1], dimension [M·N x Ls]
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STAP using Y data matrix summary

§ SI = Y*· YT = RH· QH· Q · R (YT = Q · R)

= RH· R = R1
H · R1

§ Recall  SI · u = t*, so substitute R1
H · R1 · u = t*

§ Define r ≡ R1 · u

§ Then for each Fdoppler and Aθ of interest:
§ Solve for r in R1

H · r = t* using forward substitution

(R1
H is lower triangular)

§ Solve for u in R1 · u = r using backward substitution

(R1 is upper triangular)

§ Compute h = u / (tH· u*)

§ Final result z = hT · y

§ This is known as voltage domain method
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Apply QRD to Y data matrix

§ YT = Q x R, where R is composed of R1 and 0
§ R1 is upper triangular, R1

H is lower triangular, [M·N x M·N]

M·N -10

Ls-1

=

y→

0 Ls-1 M·N -1

YT

Ls-1

Q

0

Ls-1

x

0

R1
M·N
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Example GFLOPs estimate (voltage domain)

§ 12 Aθ , 16 Fdoppler and 32 target steering vectors, 
PRF = 1 kHz, with 200 range bins
§ QR Decomposition 40.1  GFLOPs

§ Solve for r using forward substitution 4.7 GFLOPs 

§ Solve for u using back substitution 4.7 GFLOPs 

§ Compute h = u / (tH· u*) and z = hT · y 0.2 GFLOPs

§ Total 49.7 GFLOPs

§ Higher rate and resolution system: 48 Aθ , 16 Fdoppler

64 target vectors, PRF = 1 kHz, 1000 range bins
§ QR Decomposition 3.51 TFLOPs

§ Solve for r using forward substitution 37.7 GFLOPs 

§ Solve for u using back substitution 37.7 GFLOPs 

§ Compute h = u / (tH· u*) and z = hT · y 0.8 GFLOPs

§ Total 3.59 TFLOPs
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Result

z

FPGA Processing Flow Implementation 

(voltage domain)
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Voltage verses Power domain methods

§ Voltage Domain
§ Operates directly on the data

§ Solve over-determined rectangular matrix, using QRD 

§ Each steering vector requires both forward and backward substitution 
to solve for optimal filter

§ Power Domain
§ Estimate Covariance matrix (Hermitian matrix) 

§ Covariance matrix inversion → ideal for Choleski algorithm

§ Requires higher dynamic range (none issue with floating point)

§ Choleski more efficient to implement, using “Fused Datapath”

§ Each steering vector requires only backward substitution to solve for 
optimal filter


