1

Wurth Electronics Midcom EMI

Presentation EMC, Inductors, & filtering

Speaker: Douglas A. Toth, PE doug.toth@we-online.com

2017 Wurth Electronics

2017

Agenda

- EMC- basics
- Magnetic field basics
- Material basics Powdered Iron, MnZn vs. NiZn
- Filtering, Differential Mode & Common Mode
- Analyzing Impedance using the Nomogram

Magnetic field

Magnetic Field

Current conducted wires are generate a magnetic field around them

Magnetic flux lines

Magnetic Field

Magnetic flux lines

more than you expect

THE MAGNETIC FIELD - IN A CORE

EMI: Conducted Emission Measurement

Power supply V 1.0

PCB

Buck Converter ST L4960/2.5A/fs 85-115KHz

EMI: Conducted Emission Measurement

Power supply V 1.1

EMI: Be Aware:

- Select the right parts for your application
- Do not always look on cost

Very easy solution with a dramatic result!!!

Choke after

WÜRTH ELEKI

EMI: Shielded vs. Unshielded Power Inductor

FieldLines xE-8

1.799 1.727 1.655

1.683 1.511 1.439 1.295

1.223

1.151 1.079 1.007

0.935

0.791

0.719 0.576 0.601 0.432 0.360 0.288 0.216 0.144 0.072 0.000

0.000

Shielded Marking Marking 2017 Wurth Electronics

EMI: Shielded vs. Unshielded Power Inductor

EMC - Coupling

...sometimes occurs as inter-system-influence

 a sufficient EMC-design can be done at noise source, coupling path or at coupled load

\rightarrow Primary procedure

...low emission of noise at source

\rightarrow Secondary procedure

... eliminate the noise by interrupting it from path of the coupling

\rightarrow Tertiary procedure

EMC – Electromagnetic Wave

= 6000 metres

EMC – Electromagnetic Wave

CISPR* 22

- Special International Committee on Radio Interference
- Non regulatory agency, but CISPR has adopted
 - 150kHz to 30MHz Conducted

FCC** 15

- Regulatory agency
 - 150kHz to 30MHz
 - 30MHz to 40GHz?

Conducted

Radiated

*Special International Committee on Radio Interference, Pub .22 **Federal Communications Commission, Part 15

Material characteristics Radiated Conducted Harmonics Emission or Immunity Emission or Immunity 50 Hz 2 KHz 150 kHz 30 MHz 1 GHz NiZn MnZn 0.01 1000 MHz 0.1 10 100

EMC – Coupling Paths

- 1) Conductive
 - Coupling path between source and victim is formed by direct contact.
- 2) Capacitive
 - Electric field coupling
- 3) Inductive
 - Magnetic field coupling
- 4) Radiative
 - Source is the "transmitter" and victim is the "receiver"

EMC and EMI

EMC

- Electromagnetic compatibility
 - The electro magnetic compatibility is the ability of an electrical device, unit or system to function sufficiently well in its electromagnetic environment without generating unintentional interference to the other equipment in the system

EMI

- Electromagnetic Interference
 - Electromagnetic energy emanating from one device which degrades or obstructs the effective performance of another device.

EMC – Coupling Paths (Capacitive Coupling)

- Capacitive coupling between conductors cause parasitic currents
- Noise voltage increases with frequency. Higher frequency means more high frequency harmonics flow through the capacitor.
- Two wires with 2 mm diameter and spaced by 1 cm shows about 0.1pF/cm of parasitic capacitance.

EMC Design of Electronic Devices: Ventilation

Maximum lenght for 20dB Shielding Effectiveness

Frequency (MHz)	Maximum length (cm)
30	46
50	30
100	15
300	5
500	3
1000	1.5
3000	0.2

Source: Electromagnetic Compatibility Engineering. Henry W. Ott

EMC – Coupling Paths (Magnetic Coupling)

- Magnetic coupling between conductors causes parasitic induced voltages.
- Noise current increases with frequency.
- Two wires with 2mm diameter and spaced by 1cm, shows about 10nH/cm of parasitic inductance.

PCB Board Design Tips

- Identify the continuous and pulsating current paths
- Pay special attention to pulsating current paths and high dv/dt switching node !

PCB Board Design Tips

- Minimize loop between HF capacitor and MOSFETs
- It is desirable to keep C_{HF} , top FET and bottom FET on the same layer
- Use multiple vias for power connection

2017 Wurth Electronics

Interference Characteristics

Impedance increase vs. numbers of turns

2017 Wurth Electronics

Ferrite Inductors WE-CBF

Internal structure of CBF-HF / CBF-HC

High Frequency

High Current

Wirth Elektronik eiSos © Powenday 2011 Steffen Mütsch / Markus Holzbrecher

Why CMC's instead of Chip Beads

Impact of DC-bias (pre-magnetization (saturation)

742792514 (3A typ)

Impact of DC-Bias (pre-magnetization (saturation)

CBF Details/Reading datasheets

CBF Details/Reading datasheets

High speed

- Lower impedance in lower frequency
- Low attenuation for fast signals
- Applications: USB 2.0, IEEE 1394, LVDS

Wide band

- High impedance in low frequency
- Wide band through the entire spectrum
- Applications: RS232, RS422, DC/DC converters

Main Interference we see at the board level

Common mode choke - construction

WE-split ferrite – Is it a CMC?

Yes, CMC with one winding

e.g. 74271712

comparable with bifilar winding CMC

both will absorb Common Mode interferences

2017 Wurth Electronics

Clamp on Ferrites – Common mode noise

- These components are typically used as common mode choke filters.
 - In this example, it is a single cable with two wires.

- Can also be used as a differential mode filter.
 - In this example, it is a single cable with a single wire.

Differential Noise Example: Flyback Converter

Appearance of *differential noises* on the input line of a Flyback Converter

differential interference occurs mainly at *lower* frequencies

Common Mode Noise Example: Flyback Converter

Appearance of *common mode noises* on the input line of a Flyback Converter

Why Filter? - example: Fly back-Converter

Which filter do we need? Ν Ρ Е

→Parasitic capacities

e.g.: collector to cooling element

Filtering Noise Example: Flyback Converter

Filtering the mains power line for common mode and differential mode

Stray inductance: Bifilar / Sectional

Bifilar

Sectional winding:

Bifilar winding vs. Sectional winding

2017 Wurth Electronics

Common mode chokes for SMD:

	Size [mm]	Impedance [Ω	Current [A	Application
WE-CNSW	2.0 x 1.2 x 1.2 3.2 x 1.6 x 1.9	130 – 910 60 – 400	0.28 – 0.4 0.20 – 0.37	USB 2.0 Firewire/ high speed dataline
WE-SL	12.7 x 10.5 x 5,75	1100 – 14400	0.20 – 2.70	ISDN Telecom Applications
WE-SL 1 744212xxx	6.5 x 3.6 x 1.65	300 – 2000	0.30	PCMCIA cards
WE-SL 2	9.2 x 6.0 x 5.0	1000 – 20000	0.40 – 1.60	VCC Power & Datalines
WE-SL 3 744252/253xxx	9.2 x 6.6 x 2.5	1250 – 5000	0.50 – 0.70	VCC Power & Datalines higher current ratings
WE-SL 5 744272xxx	10.0 x 8.2 x 6.5	290 – 13000	0.35 – 2.50	VCC Power Lines
2017 Wurth Electronics				43

• different designs

WE-SL2 744226S sectional winding

WE-SL2 7442276 bifilar winding

Summary→ Common mode choke – application USB2.0

Too much differential mode impedance distorts the USB 2.0 eye pattern

Common Mode Choke (Material Comparison)

Original measurement

Insertion loss calculation

Impedanz des Ferrits/impedance of the ferrite (Ω)

Application overview

Assumend practical system impedance	Application
1Ω	GND (Ground Planes)
10 Ω	V _{cc} (Supply Voltage lines)
50 Ω – 90 Ω	Datasignal Lines/Clock/ Video Signal/USB
90 Ω – 150 Ω	Long Datasignal Lines

The mathematical approach

$$Z_{F} = \left[10^{\frac{A}{20}} \cdot (Z_{A} + Z_{B})\right] - (Z_{A} + Z_{B})$$
$$Z_{F} = \left[10^{\frac{20}{20}} \cdot (10_{A} + 10_{B})\right] - (10_{A} + 10_{B})$$

 $Z_F = 180 \Omega$

Application overview

Assumend practical system impedance	Application
1Ω	GND (Ground Planes)
10 Ω	V _{cc} (Supply Voltage lines)
50 Ω – 90 Ω	Datasignal Lines/Clock/ Video Signal/USB
90 Ω – 150 Ω	Long Datasignal Lines

- 1. 1.Require 20dB of attenuation at 200 MHz
- 2. Know that it is a power cable
- 3. Power port has 10 Ω impedance
- 4. Result is a impedance of 180 $\begin{array}{l} \Omega \\
 A = 20 \log \frac{Z_A + Z_F + Z_B}{Z_A + Z_B} \\
 A = 20 \log \frac{10_A + 180_F + 10_B}{10_A + 10_B} \\
 A = 20 \log 10 \\
 A = 20 \log 10 \\
 A = 20.00 dB
 \end{array}$

Insertion loss calculation

System impedances

The practical approach

Impedanz des Ferrits/impedance of the ferrite (Ω)

Annlie	ation	over	VIAW
Applic		UVGI	VIGW

Assumend practical system impedance	Application
1Ω	GND (Ground Planes)
10 Ω	V _{cc} (Supply Voltage lines)
50 Ω – 90 Ω	Datasignal Lines/Clock/ Video Signal/USB
90 Ω – 150 Ω	Long Datasignal Lines

- 2. Know that it is a power cable
- 3. Power port has 10Ω impedance
- 4. Result is a impedance of 180Ω

Level [dBµV/m]

Check the results

\rightarrow Measuring the emission and compare the attenuation

Level [dBµV/m]

- Choosing different system impedance
- Effect on video/clock/dataline system impedance (50Ω)

• Possibility: Attenuation too low

→ could be because of wrong system impedance estimation → increase the impedance of ferrite ($Z_F \sim 1000\Omega$)

<u>Dependency</u> of system impedance (Source/Load) vs. attenuation
 → high system impedances results in a low attenuation

More Than You Expect

What more do you need?

Look at our Book:

Chap.1: Basics keep it simple, stupid

Chap.2: Components Descriptions, Applications, Simulation Models and many more

Chap.3: Filter-Circuits Design, Grounding, Layout, Tips

Chap.4: Applications Circuit, suggested parts, Layout

Chap.5: Appendices from A to Z

LT Spice IV Simulator Manual

- 1. Basics
 → History of the LT Spice Simulator
- 2. Electrical components
 → Libraries of existing parts
- Output creation
 → Design recommendations
- 4. Application notes
 → Examples of syntax and simulations
- 5. Analysis
 →Temperature, Monte Carlo, operating limits, etc.

ABC of Capacitors and Design Kits

- 1. Technical basics
- 2. Charactaristics
- 3. Types of capacitors

80 pages in German

English version available

Design Kits WCAP-FTX2, -FTXX

www.we-online.com

Online:

Career

PE

a

Online: www.we-online.com

Online: www.we-online.com

Questions?

Thank yo

