Conducted EMI

WURTH ELECTRONICS MIDCOM INC.

Retlif Labs

Presented by: Douglas Toth

2010

Topics

- 1. EMI/EMC General Information Why need EMI reduction?
- 2. Materials Frequencies for Effectiveness
- 3. Shielded and Un-shield comparison
- 4. Inductors vs. Ferrites
- 5. Common Mode and Differential Mode
- 6. Conducted EMI emission analysis
- 7. Information on Transformers

C) Alexander Serfer07 Dec 20 10

Switching Regulator Topologies

Switching Regulator Topology	Inductive Components
Step-down-converter (Buck-Converter)	Storage inductor => WE-SI/FI or WE-HC-/ or WE-PD-Series
Step-up-Converter (Boost-Converter)	Storage inductor => WE-SI/FI or WE-HC-/ or WE-PD-Series
SEPIC Single ended primary inductance converter CUK converter	Coupled storage inductor with two windings or two identical storage inductors => WE-DD or WE-FLEX (with airgap !)
Flyback-Converter	Flyback-transformer => WE-FLEX (gap !)
Forward-Converter	Transformer and storage inductor => WE-FLEX (no gap !)
Push-pull Converter	Transformer and storage inductor => WE-FLEX (no gap !)

Inductor Selector Guide

Ele Servic	luctor Sel e Z	lector Version	1.1.1										×
	- online.	.com •	WE I	nduc	tor S		cto	r ər			DRTH EL		ect
Sele	ect Con	verter Topo	logy:		08	luck Convert	er 🗢	Boost Co	nverter	C SEPIC Co	nverter	🗢 Manu	al Selection
U _{in} V 10 V 14 V		f 200 kHz Δ1 20 %			Calcul	ations: Lopt = Irms = Ipeak = ALL = Vt = ton=	24.263 µ 3.000 A 3.300 A 0.600 A 0.286 1.429 µ	1H 1. 13					
Series	Size 	Ordercode	L [µH] max Sequence] 1	RDC typ [mC]	N (A)	ISat [A]	L [mm]	W (mm)	H [mm]	Core Mat	Tamb [*C]	Tmax Shield	ed
$\frac{WE - PD}{WE - PD}$ $\frac{WE - PD}{WE - PD}$ $\frac{WE - PD}{WE - PD}$	L L XL XL XL XL XL	7447703220 744771122 744770122 744770127 7447709330 744770133	22.000 22.000 27.000 33.000 33.000	23.300 31.000 33.000 35.000 36.800 47.000	5,300 3,370 4,100 3,700 4,200 3,200	\$.500 3.770 \$.000 3.800 5.500 3.600	12.00 12.00 12.00 12.00 12.00	12.00 12.00 12.00 12.00 12.00	10.00 5.00 8.00 8.00 10.00 9.00	Nichel2n Nickel2n Nickel2n Nickel2n Nickel2n Nickel2n	85 85 85 85 85	125 yes 125 yes 125 yes 128 yes 125 yes 125 yes	

Interference - Transmitter / Receiver

Interference - Frequency Range for EMI Tests

EMI: Conducted Emission Measurement

• Power supply V 1.0

Buck Converter ST L4960/2.5A/fs 85-115KHz

EMI: Conducted Emission Measurement

• Power supply V 1.1

EMI: Be Aware:

- Select the right parts for your application
- Do not always look on cost

Very easy solution with a dramatic result!!!

EMI: Shielded vs. Unshielded Power Inductor

EMI: Shielded vs. Unshielded Power Inductor

What is the main different between a Inductor and EMC-Ferrite?

=> Application Storage Choke: (Inductor)

Request: lowest possible losses at application frequency

high Q-factor

=> Application as absorber-filter: (EMC Ferrite)

Request: highest losses possible at application frequency range low Q-factor

Ferrite Material

Ferrite Inductors WE-CBF

Inductor vs. EMI-Ferrite:

)7 Dec 20 10

Why CMC's instead of Chip Beads

Impect of DC-bias (pre-magnetization (saturation)

Impact of DC-Bias (pre-magnetization (saturation)

Common Mode Choke

comparison common mode chokes CMB – CMB NiZn

)7 Dec 20 10

Advantage of a Common Mode Choke

Filtering with two inductors or chip beads

Signal before filtering after filtering

Rise-time of the signal is affected, which could cause problems for fast data and signal lines

which occurs from the DC current the filtering performance is shortened.> because of the pre-magnetization (saturation)

Advantage of a Common Mode Choke

Filtering with a Common Mode Choke

➤ no pre-magnetization (saturation) occurs from the DC current, because of magnetic coupling

> much better performance vs. two separate inductors or ferrites

Differential Noise Example: Flyback Converter

Appearance of *differential noises* on the input line of a Flyback Converter

differential interference occurs mainly at *lower* frequencies

Common Mode Noise Example: Flyback Converter

Appearance of common mode noises on the input line of a Flyback Converter

Filtering Noise Example: Flyback Converter

Filtering the mains power line for common mode and differential mode

Common mode / Differential mode

The DIFFERENTIAL Mode Signal creates a Flux in opposite directions – Thereby canceling

The COMMON MODE signal does not cancel and an Inductive Impedance is created thereby acting as a filter

The DIFFERENTIAL Mode Signal creates a Flux in opposite directions – Thereby canceling The operational current (diff. mode) is routed by all relevant conductors through the core (e.g. +/- or L/N). That's why the magnetic fields of these two conductors compensate each other to zero => no influence on the wanted signal

The COMMON MODE signal does not cancel and an Inductive Impedance is created thereby acting as a filter

The disturbance current flows on both wires in the same direction and generates a magnetic field in the toroidal core => the choke is able to filter unwanted noises.

Unbalanced Current

- the operating current on both conductors is almost the same. When the difference between input and output current is too big, the common mode choke is no longer compensated and starts saturating very fast !

Common Mode Choke Nidcom sectional winding bifilar winding < advantage? >

Sectional winding:

Bifilar winding vs. Sectional winding

35

Common mode chokes for SMD:

		Size [mm]	Impedance [O]	Current [A]	Application
WE-CNSW		2.0 x 1.2 x 1.2 3.2 x 1.6 x 1.9	130 – 910 60 – 400	0.28 – 0.4 0.20 – 0.37	USB 2.0 Firewire/ high speed dataline
WE-SL		12.7 x 10.5 x 5,75	1100 – 14400	0.20 – 2.70	ISDN Telecom Applications
WE-SL 1 744212xxx		6.5 x 3.6 x 1.65	300 – 2000	0.30	PCMCIA cards
WE-SL 2		9.2 x 6.0 x 5.0	1000 – 20000	0.40 – 1.60	VCC Power & Datalines
WE-SL 3	100				VCC Power & Datalines
744252/253xxx	0	9.2 x 6.6 x 2.5	1250 – 5000	0.50 – 0.70	higher current ratings
WE-SL 5 744272xxx		10.0 x 8.2 x 6.5	290 – 13000	0.35 – 2.50	VCC Power Lines
Common Mode Choke

• different designs

WE-SL2 744226S sectional winding

WE-SL2 7442276 bifilar winding

CMC - USB 2.0 Filtering for Common Mode Noise

)7 Dec 20 10

CMC- USB 2.0 Filtering with WE-CNSW

How Much Inductance is Needed?

A5'3

10.0

50.0 Miz

before

after only changed one component

30mH!

Common Mode Choke (Sectional)

- power supply : "high" voltage application
- signal : low and high speed signal
- → only solution to guarantee distances between the two winding according to IEC60938 or UL1283 max. voltage application : 250 VAC / DC
- \rightarrow high leakage inductor

→ two products in one (preferred for power supplies)

 \rightarrow max. voltage : print in data sheet

Common Mode Choke (Bifilar)

- data signal application
 - <u>bifilar</u> \rightarrow low leakage inductor

- power supply : low voltage application
- signal : only low speed signal

→ low voltage application (42 VAC / 80V DC)

Common Mode Choke

• comparison Common Mode to Single Choke

	current compensated or common mode choke	single choke
common mode impedance	high	low to medium
differential mode impedance	low	medium
dependency of impedance from load current	independent	depends on "core"
attenuation of used signal	low	high

What Impedance is Needed? Nidcom Level [dBµV/m] 60 50 40 30 20 50M 70M 100M 200M 300M 400M 600M 1G Frequency [Hz]

)7 Dec 20 10

Conducted Emissions Example – Test and Compare

- Chip Bead
- Differential Choke
- Bifilar Wound Common Mode Choke
- Sector Wound Common Mode Choke

Conducted Emissions Example - Test Setup

a) no loadb) 1.5A load300KHz fsw.

Conducted Emissions Example – Demo Board

Conducted Emissions Example - LISN

Line Impedance Stabilization Network (LISN)

•Isolates DUT (device under test) from Power Source (typically mains) Noise

•Provide characteristic Impedance to DUT (50ohms in this case)

•Path for Conducted noise from DUT to Spectrum Analyzer

The 1 μ F in combination with the 50 μ H inductor is the filter that isolates the mains from the EUT. The 50 μ H inductor isolates the noise generated by the EUT from the mains. The 0.1 μ F couples the noise generated by the EUT to the EMC analyzer or receiver. At frequencies above 150 kHz, the EUT signals are presented with a 50- Ω impedance.

Conducted Emissions Example – Electrical Load

Conducted Emissions Example – Test Board

- DC/DC Converter
- Input Voltage20V-25V
- Output Voltage12V/6.25AFsw: 300KHz

Testcondition:

- no load
- max. load 1.5A

Conducted Emissions Example – No Filter

Conducted Emissions Example – Chip Bead

Chip Bead 530? / 3A

Conducted Emissions Example – Chip Bead Results

Conducted Emissions Example - Chip Bead

Chip Bead 530? / 3A

Conducted Emissions Example – Differential Choke

Differential Line Choke 220uH

Conducted Emissions Example – Differential Choke Results

:

1040

01-06-21

Neasoning

Conducted Emissions Example – Bifilar CMC

CMC 4.7mH Bifilar Winding

Conducted Emissions Example – Bifilar CMC

Artikel-Nr.	Induktivität (µH)	B _{DC} (∩)	I _N (mA)	Impedanz max. (೧)
744272121	2 x 120	0,025	2500	460
744272221	2 x 220	0,032	2200	780
744272251	2 x 250	0,035	2000	970
744272471	2 x 470	0,065	1600	1750
744272102	2 × 1000	0,180	950	3600
744272222	2 x 2200	0,300	750	7500
744272332	2 x 3300	0,360	650	8900
744272392	2 x 3900	0,540	520	9600
744272472	2 x 4700	0,720	(350)	13000

744 272 472

Warning: Don't try this at home!

For Demonstration Purposes Only!

Load is 1.5A

And..... CMC

CMC 4.7mH Bifilar Winding

Conducted Emissions Example – Bifilar CMC Results

Conducted Emissions Example – Sector CMC

CMC 47mH sectional winding

Conducted Emissions Example – Sector CMC

Einfügedämpfung im Frequenzverlauf

CMC 47mH Sectional Winding Leakage Inductance Ls~ 250uH (5% of L)

Conducted Emissions Example – Sector CMC Results

CMC 47mH sectional winding

)7 Dec 20 10

Conducted Emissions Example -Conclusions

- High Frequency Noise Appears Under Load
- Noise is Differential Mode
- Differential Choke
 - Attenuates low frequency noise because of SRF
- Bifilar CMC
 - Does not attenuate because of very low leakage inductance.
- Sector CMC
 - Attenuates both high and low because of leakage inductance with high SRF.
- Chip Bead

)7 Dec 20 10

 Without a load there is some affect at high frequencies, but with a load the bead pre-magnetizes and there is no affect at all.

Transformers for EMC – What to Choose

Transformers for EMC – No Antennas Please!

Enough Said!

Flying Leads Make Great Antennas.

Estimate Component Losses

- Efficiency is ~ 75-85% Typical
 - 33% Switch
 - 57% Output Rectifiers
 - 5% Magnetics
 - 5% Miscellaneous

So where are your losses?

Where are the losses ?

Losses in transformers and inductors

$$P_{total} = P_{Cu} + P_{FE}$$

- Copper losses
 - DC losses
 - AC losses
 - Skin Effect
 - Proximity Effect
- Core losses
 - Hysteresis loss
 - Eddy current losses

Practical Formulas for Calculation of Temperature Rise ?T for WE-PD,WE-DD

Core/Copper Loses & Efficiency

Practical way for core loss calculation P_{core} by using I_{max} and ripple current ?I for WE-PD

PD size XL
$$P_{core(mW)_{-}744770 x} = 12 \cdot f_{(kHz)}^{1,274} \cdot \left(\frac{\Delta I}{I_{max}}\right)^{1,9}$$
PD size L
$$P_{core(mW)_{-}744771 x} = 7,2 \cdot f_{(kHz)}^{1,274} \cdot \left(\frac{\Delta I}{I_{max}}\right)^{1,9}$$
PD size M
$$P_{core(mW)_{-}744777 x} = 2 \cdot f_{(kHz)}^{1,274} \cdot \left(\frac{\Delta I}{I_{max}}\right)^{1,9}$$
PD size S
$$P_{core(mW)_{-}744778 x} = 1,6 \cdot f_{(kHz)}^{1,274} \cdot \left(\frac{\Delta I}{I_{max}}\right)^{1,9}$$

Trilogy of Inductors Pages 220-221

)7 Dec 20 10

What more do you need?

Look at our Book:

Chap.1: Basics keep it simple, stupid

Chap.2: Components Descriptions, Applications, Simulation Models and many more

Chap.3: Filter-Circuits Design, Grounding, Layout, Tips

Chap.4: Applications Circuit, suggested parts, Layout

Chap.5: Appendices from A to Z
Transformers for EMC – No External Gaps

Transformers for EMC – No External Gaps

Transformers for EMC – No EI Core

- El Core Style
- Mylar or Tape Used for Gap
- Three Unshielded Gaps

Transformers for EMC – Gap

Transformers for EMC – Internal Shields

- Shield both Conducted and Radiated Noise
- Copper Foil or Wound Magnet Wire?
- Copper Foil Shields Expensive, Why?
 - Must Build Shield
 - Must be Cuffed with Tape
 - Winding Machine Stopped to Apply
- All Shields Take Away from Winding Area

Transformers for EMC – External Shields

- How Do External Shields Differ from Internal Shields?
- Shields Radiated Noise ONLY!
- As Expensive as Internal Shields

Transformers for EMC – Multi-layer Primary Termination

Nidcom

- How does One Terminate a Multi-layer Primary?
- Terminate Start to Switch so Subsequent Layer/s Shield High dv/dt Windings from outside world.

NotePlecflactty Diots on FinishCoentristeOnkay?

Transformers for EMC – Y-Cap Termination

- Noise Couples Through the Transformer via C_{ww}
 - Noise Seeks Path to Primary Circuit
 - Without Path, Noise May Become Conducted Emissions
- Y-Cap Across Transformer Reduces Noise
 - Tune the Capacitor for Optimum Loss vs. Noise Reduction
 - Capacitor Usually in the 2.2nF to 4.7nF range
 - Y-Caps to Transformer Terminals not on Switch nor on Diode
 - Close to Transformer as Possible

What Can We Do?

Decrease Cww?

What Else Can We Do?

Transformers for EMC - Small Designs

Why Build Smaller Designs?

Build Smaller More Compact Transformers

- Smaller Transformers have less Parasitics
 - Less Capacitance
 - Smaller Leads (ie. Smaller Antennas)
 - Smaller Gaps
 - Less Leakage Inductance
- Less Conducted and Less Radiated Noise

Transformers for EMC – Power Supply

Transformers for EMC – Schematic

Nidcom

Pegel [dBµV]

•Without Adjusted **Snubber** •With Adjusted Y-Cap

Transformer for EMC – Conclusion for this Supply

- Necessary to Pass
 - Current Compensated Choke
 - Y-Caps
- Not Necessary to Pass
 - Optimized Snubber

Inductor Selector Guide

WE Inductor Selector Version 1.1.1 Ele Service 2															
www.we-online.com												more than you expect			
WE Inductor Selector Easy Inductor Selection for DC/DC Converter															
Sele	ect Con	verter Topo	ology:			08	luck Convert	er C	Boost Co	nverter	SEPIC Co	nverter	-	Manual Se	election
U _{in} 10 v 14 v		f[200 kHz ∆I 20 %		v V		Calcul	ations: Lopt = Irms = Ipeak = At L = Vt = ton=	24.263 µ 3.000 / 3.300 / 0.600 / 0.286 1.429 µ	2H0 A. A. A. S						
Series	Size	Ordercode Sorting (Type	min max [Sequence]	L [µH]	RDC typ [mC]		ISat [A]	L [mm]	W (mm)	H (mm)	Core Mat	Tamb [*C]	Tmax [*C]	Shielded all 💌	
WE-PD WE-PD WE-PD WE-PD WE-PD	L L XL XL XL XL	7447709220 744771122 744770122 744770127 7447709330 744770133	2222	2.000 2.000 2.000 3.000 3.000 3.000	23.300 31.000 33.000 35.000 36.800 47.000	5.300 3.370 4.100 3.700 4.200 3.200	5,500 3,770 5,000 3,800 5,500 3,600	12.00 12.00 12.00 12.00 12.00	12.00 12.00 12.00 12.00 12.00 12.00	10.00 8.00 8.00 10.00 9.00	Nickel2n Nickel2n Nickel2n Nickel2n Nickel2n	85 85 85 85 85 85	125 125 125 125 125 125	yes yes yes yes yes	

)7 Dec 20 10

Wurth Electronics Midcom Inc.

What more do you need?

Look at our Book:

Chap.1: Basics keep it simple, stupid

Chap.2: Components Descriptions, Applications, Simulation Models and many more

Chap.3: Filter-Circuits Design, Grounding, Layout, Tips

Chap.4: Applications Circuit, suggested parts, Layout

Chap.5: Appendices from A to Z

Any Questions?

Thank you from – the Wurth Electronics Midcom East Coast

