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• AC/DC efficiency standard and PFC efficiency 
requirement

• Bridgeless PFC topologies and development trends 
• GaN ( Gallium Nitride) FET overview
• Totem-pole CCM bridgeless PFC control

- UCD3138 control implementation
- Ideal diode emulation
- AC crossover detection and control 

• GaN device test in FET mode and diode mode
• Totem-pole CCM bridgeless PFC test
• Summary
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AC/DC Efficiency Level Certifications
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80 Plus 
Test Type

115 V 230 V 

Fraction of 
rated load 10% 20% 50% 100% 10% 20% 50% 100%

80 Plus 80% 80% 80%
80 Plus Bronze 82% 85% 82% 81% 85% 81%
80 Plus Silver 85% 88% 85% 85% 89% 85%
80 Plus Gold 87% 90% 87% 88% 92% 88%
80 Plus Platinum 90% 92% 89% 90% 94% 91%
80 Plus Titanium 90% 92% 94% 90% 90% 94% 96% 91%

Energy Star Specification



PFC Efficiency Budget
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• PFC design becomes more challenging at Platinum level efficiency and much harder 
at Titanium level efficiency

• Well designed single-phase PFC and interleaved PFC achieve around 97.5% 
efficiency and are just able to meet Platinum efficiency requirement 

• Bridgeless seems to be the only way to reach Titanium efficiency level

80 Plus Test 
Type Efficiency at 115 V Efficiency at 230V 

Fraction of 
rated load 10% 20% 50% 100% 10% 20% 50% 100%

80 Plus 
Platinum

PFC 95.8% 95.4% 93.7% 95.7% 97.4% 95.8%

DC/DC 94% 96.5% 95% 94% 96.5% 95%

80 Plus 
Titanium

PFC 95.5% 95.8% 96.4% 93.8% 95.8% 98% 98.5% 94.8%

DC/DC 94% 96% 97.5% 96% 94% 96% 97.5% 96%



What is Bridgeless PFC?

Slow-recovery
rectifiers
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Existing Bridgeless PFC Application Status

Basic Bridgeless PFC 
+ Good efficiency
+ Easy control
- High component count
- Poor component utilization
- Low density

Totem-Pole Bridgeless PFC 
+ Good efficiency
+ Fixed frequency
+ Easy control

- DCM only

- For power < 300 W

Texas Instruments – 2014/15 Power Supply Design Seminar

Slow-Recovery
Rectifiers
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New PFC Development Trends
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Transition-Mode Totem-Pole PFC
• ZVS operation 
• Interleaved configuration for high power application (around max 

300 W per phase)
• Variable frequency control
• Phase shedding and adding to optimize light load efficiency 
• Suitable for MOSFET applications

Continuous-Conduction-Mode Totem-Pole PFC
• Low component count
• Fixed switching frequency, zero reverse recovery switch should be used
• GaN is a good candidate for the application
• Possible to operate TM and ZVS at light loads



GaN Versus Silicon and SiC
Eg: Wide band-gap energy- more 
energy to cross band gap-> low 
leakage current > high temp 
stability

EBR: Critical field break     
down voltage – avalanche  
breakdown

VS: Saturation velocity -
determines switching 
frequency limitation

μ: Electron mobility -inversely 
proportional to on-resistance
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Properties GaN Si SiC

EG(eV) 3.4 1.12 3.2

EBR(MV/cm) 3.3 0.3 3.5

VS(x 107cm/s) 2.5 1.0 2.0

µ(cm2Vs) 990-2000 1500 650

Theoretical on-resistance vs blocking voltage

Reference:
EPC, Gallium Nitride (GaN) technology overview

Key electrical properties of three 
semiconductor materials
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Cascode GaN FET Structure
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Cascode GaN FET internal structure Example of a boost configuration 

Advantages:
• Depletion-mode GaN: low cost and 

better performance (compared to 
enhancement-mode GaN)

• Same MOSFET driver used
• Low forward voltage drop in diode mode

Disadvantages:
• Same reverse recovery of the 

cascode MOSFET body diode
• Potential MOSFET avalanche at

high Vds slew rate
• Large gate charge (same as the 

MOSFET)

Kelvin Source-Sense



Dmode-GaN + Safety FET Structure

6-10Texas Instruments – 2014/15 Power Supply Design Seminar

Advantages:
• Zero reverse recovery
• Low gate charge
• No LV MOSFET switching loss
• Suitable for high switching frequency applications
• Integrated gate driver circuit to ease applications 

Disadvantages:
• High forward voltage drop in 

diode mode
• Complicated gate driver circuit 

(IC design)
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GaN-Based CCM Totem-Pole
Bridgeless PFC Power Stage
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• Q1 and Q2 are low frequency switches. 

• Q3 and Q4 are an active switch and a SyncFET

(depending on input AC voltage’s polarity)

D1 and D2 are surge path diodes.



Positive switching cycle – active switching stage
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GaN-Based CCM Totem-Pole
Bridgeless PFC Power Stage

Positive switching cycle
 Active switching stage
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Positive switching cycle – freewheel stage

GaN-Based CCM Totem-Pole
Bridgeless PFC Power Stage

Positive switching cycle
 Freewheeling stage



GaN FET Forward Voltage Drop and Ideal 
Diode Emulation Control
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Output characteristics of a typical depletion mode GaN FET
Ref:  Transphorm datasheet 

GaN FET operates at diode mode GaN FET operates at ideal diode mode 



Adaptive Dead-Time Control 
for SyncFET to Turn On
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Csub_d, Csd and Crss add to form Coss Current sampling point



Hardware-Assisted IDE Control

6-16Texas Instruments – 2014/15 Power Supply Design Seminar

• Difficulty of volt-second control for Ideal Diode Emulation

CCMLoad increasing Stuck at CCM

Negative current detection and SyncFET soft off control is needed

• Freewheel stage current sensing for zero current detection

Db is chopped off at ZCD point

DCM Load decreasing



UCD3138 – Based Control Circuit
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 ADCs sense AC line voltage for AC crossover detection.
 ADCs sense absolute AC line voltage difference for PFC voltage loop control.
 UCD3138 firmware implements PFC voltage loop.
 PFC current control implemented by UCD3138 hardware digital loop.
 UCD3138 generates main FET gate drive signal and syncFET gate drive signal.
 Crossover detection block generates gate signal Q1 and Q2 for AC bridge FETs.
 Crossover detection block provides main FET and syncFET selection logic for Q3 and Q4.
 Analog negative current is sensed, compared w/ UCD internal reference for ZCD or   

negative current control.
 UCD3138 hardware executes cycle-by-cycle IDE control.



Test Results – GaN FET 
Performance in FET Mode
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Test Conditions: 
• Vin = 200 VDC, Iin = 2 ADC, VO = 400 V
• Q4: 600 V 150 mΩ depletion-mode GaN power transistor
• D3: Cree SiC diode C3D04060A
• Gate turn-off resistance = 2.2 Ω, turn-on resistance=15 Ω

Test Results:
• Turn-on time = 9 nS
• Max turn-on dV/dt = 79 V/nS
• Coss is linearly charged up to VO at turn-off
• About 18 V ringing when freewheel diode conducts

Vg4
(10V/)

Vds4
(100V/)

IL
(2A/)

20ns/div 20ns/div
resonance caused by the trace leakage inductance and the output high frequency ceramic capacitor
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Test Results – GaN FET 
Forward Voltage Drop in Diode Mode

Test Conditions: 
• Current = 0.1 A – 3 A, dead-time = 100 nS

Test Results:
• Forward voltage drop varies from 4.3 V to 7.3 V device-to-device when GaN is off

Vg4
(10V/)

Vds4
(10V/)

IL
(1A/)

1us/div
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Test Results – GaN FET 
Reverse Recovery in Diode Mode

Test Conditions: 
• Q3 uses GaN FET, C3D04060E and 

STTH8R06D

• di/dt is about 368 A/µS

Test Results and Conclusions:
• Both GaN FET and SiC diode just have ringing 

current – no reverse current was observed

• STTH8R06D has a significant reverse current

• GaN FET has a larger ringing than SiC, but at lower 
frequency, as a result of larger output capacitance 
of the two GaN FETs
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AC Current Crossover Control
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Current Spike Root Causes and Solutions

Root Causes:
• Inaccurate a.c. voltage sensing
• Turning on rectifier FET too early 

cause a.c. line short circuit
• Current loop disturbed by current spike 
• Rectifier FET hard switching
• Current loop compensation not 

optimized

Solutions:
• Differential a.c. voltage sensing with low 

phase offset
• Using different  a.c. crossover voltage 

thresholds for high line and low line
• Sufficient blanking time
• Disable PWM and stall integrator during 

blanking time
• Rectifier FET soft switching on
• Inserting PWM turn-on delay time
• Optimize current loop compensation
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AC Current Waveforms

115 Vac input at 450 W 
PF= 0.999
THD = 3.3%                     

230 Vac input at 750W 
PF= 0.995
THD = 4.0%                     
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Totem-Pole Bridgeless PFC Efficiency

97.1% 
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750 W Totem-Pole Bridgeless PFC Prototype
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Summary
• GaN FET exhibits superior switching characteristics
• Safety GaN FETs has zero reverse recovery
• Suitable for high-frequency hard-switching applications
• Relative high “body diode” forward drop
• Sophisticated ideal-diode-emulation is the key to the success of Safety  

GaN FET applications
• Enables Totem-Pole PFC CCM operation 
• AC crossover current spike root causes were analyzed and solutions 

provided
• High efficiency potential
• Possible TM ZVS control to optimize light loads efficiency 
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