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WHAT IS GPS?

m GPS is a satellite-
. D based all-weather
P navigation system

| providing precise

‘ position, velocity,
K E7 e and timing
i a = information.
ﬂﬂw’ - m Global navigation
' systems
— GPS: US
— GLONASS: Russia
— Galileo: Europe
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GPS COMPONENTS

Space segment %5 7

Downlink data
* Coded mngng signals
* Position information
Uplink deate » Amospheric dala

= Satellite ephemeris posifion constants * Almanac
* Clock-correction factors

* Atmospheric data

* Almanac

m Space segment: satellite constellation
M ' _
s AT Control segment: ground stations
Advanced m User segment: receivers
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HOW GPS WORKS?

m GPS uses one-way time-of-
arrival ranging to determine
user position - measure the
direct path signal travel time
from a satellites to a user's
receiving device.

— Pseudorange: the range from the satellite plus
clock offset

m Geolocation of the
receiver: the
intersection of
pseudoranges from a
set of satellites
(minimum 4). 5
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GPS SIGNAL

GPS employs
(DS-SS) signaling

L1 CARRIER 1575.42

WA HX}—!’X‘*—) L1 SIGNAL

m Two L-band
MWL ——5(F ST frequencies:

NAV/SYSTEM DATA 50 Hz

m{ (@) o5 — L1=1.57542 GHz

P-CODE 10.23 MHz

WL WL ——E — [2=1.2276 GHz

A AVRARMANAN, —:(EH L2 SIGNAL

B Two pseudorandom codes

— . chip rate 1.023
Mchips/sec, BW 2 MHz, repeats every millisec.

m‘gggﬁf’m - : chip rate 10.23 Mchips/sec, BW
Advanced 20 MHz, repeats about every week (military use).
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G PS S I G NAL (Cont'd)

m GPS C/A signhal waveform:

GPS navigation
symbol 50 bits/sec

20 X 1023 PRN chips per GPS bit———
C/A-code
1.023Mchips/sec

1st block 20th block
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CHALLENGES IN GPS

m Two dominant sources of errors in precision
GPS:

— Interference: reduces the SNR of the GPS
signal such that the receiver is unable to obtain
measurements from the GPS satellite.

— Multipath: broadens and biases the cross-
correlation function.
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GPS AND DSSS SYSTEMS

m Common

— Both use PN

— Both require synchronization
DSSS: despreading
GPS: despreading and pseudorange measurement

m Difference
— Multipath

DSSS: improves system performance due to
diversity — constructive ©

GPS: results in erroneous pseudorange
measurements — destructive ®

— Near-far phenomena

DSSS: a ®
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INTERFERENCE IN GPS

Types of Interference in GPS:
m Additive white Gaussian noise (AWGN)

— Broadband interference can sometimes be
modeled as AWGN

m Continuous wave (CW)
— A pure tone or narrowband modulated signal.
— Chirp signal

m Pulsed interference (e.g., radars)
— Effectively “shoots holes” in the received signal
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EXISTING TECHNIQUES

m Maximum Likelihood Approach

(Time-delay and carrier-phase estimation)
+ Single-antenna approach
+ Multiple-antenna approach

m Suboptimum Methods

(Interference Suppression)
— Space-time adaptive method
— Time-frequency method
— Navigation data demodulation
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EXISTING TECHNIQUES

GPS interference suppression

— | T

Requires satellite Requires neither
locations  Self-coherence
- MMSE \ based anti-

) ME”\]R Assumes bit jamming

synchronization ~ @pproach
* Spatial-temporal

matched filtering
12
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Interference Representation

m Time-frequency domain

Frequency
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INTERFERENCE
SUPPRESSION IN GPS (Cont'd)

m Spread-spectrum (SS) provides certain
protections against interference

— Receiver fails when the interference to signal
ratio exceeds the 30 dB.

m Interference suppression
— Separate domain: time, space, or frequency
— Joint domain: time-frequency or space-time

m None of these methods fully utilizes the
Moeness i ranetitive feature of the GPS C/A-code.
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GPS SIGNAL STRUCTURE

Noise-free GPS data structure

m Two blocks of data (V consecutive samples
each)

Moeness Amin — ]P SampIeS apart from data
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The NOTION OF SELF-
COHERENCE

m Self-coherent signal

The correlation between the signal and its
frequency-shifted version is nonzero for some
time lag.

m Significance of self-coherence

— Blindly extract the desired signals in the
presence of unknown noise and interference.

— SCORE algorithm
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SELF-COHERENCE (contq)

m Example:

x(t) =as(t)+v(t)

— 5(7): self-coherent signal [not v(7)]
Cyclic autocorrelation of x(7)

RP(2)=|d| RP(2)+ RP () =|a| RV ()

SS SS

m Frequency shift completely decorrelates
the interference component in x(7).

17



SELF-COHERENCE
GPS RECEIVER

Recelver structure

B M-antenna array

E [WO
beamformers

— w. generates
signal

— f. generates

signal
Moeness Amin
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SELF-COHERENCE
GPS RECEIVER (contq)

m Assumptions:

— Data block and reference blocks are within the
same navigation symbol.

— Interference does not have the same periodic
structure as that of the GPS C/A signals.

m [he proposed receiver acts like a pre-
processor to suppress interference of all
satellites.

— Conventional multipath mitigation techniques,
such as delay lock loop (DLL), can then operate
on significantly higher SINR than that
encountered at the receiver input.
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RECEIVED SIGNAL

m Received signal at the chip-rate in the
data block

X(n) = ZQ:S(] (n—t, )aqej% +u(n)d + v(n)

— Sy(n) is direct-path signal

m If the GPS signal, interference, and
noise are independent

_ H _
Moeness Amin RXX =L {X(H)X (n)} i RS T Ru T Rv
Advanced

.. 2
Communications 0



RECEIVED SIGNAL (conta)

m The samples of GPS signal in the
reference block have the same values as
the corresponding samples in the data
block within the same symbol

x(n)=x(n—jP), 1<j<20

m If the GPS signals are the only data
components that are correlated when
delayed jP samples

R = E{x(n)x" (n- jP)} =R,
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PROPOSED RECEIVER
m Cost function — SCORE algorithm

2 H (P)
- ‘W Rt

R.R, [w'R, wl|[f'R f]

zZ

C(w,f)=

w is obtained by maximizing C(w,f)
— Beamformer output: z(n) = w" x(n)
— Reference signal: d(n) =f"x(n— jP)

— Cross-correlation between z(n) and d(n):

R, =E{z(n)d" (n)|
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PROPOSED RECEIVER (contq)

m Error signal
e(n)=z(n)—d(n)

Least-squares solution of f
__ p-lp (PH
fLS _ RxxRxx W

m The weight vector w that maximizes the
cost function is the eigenvector
corresponding to the largest eigenvalue of
the generalized eigenvalue problem

oeness_Amin _ (P -lp (P)
MCenter/fil)r Rxxw R /?’maXRxx RxxRxx W
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Exact Expression

m Define events

A, :x(n) & x(n— jP) are within the same symbol,
A, :x(n) & x(n— jP) are in two symbols

with the same sign,
A4,,:x(n) & x(n— jP) are in two symbols

with different signs

m [he corresponding probabilities are

P
|2% { | | } —1_ J_
20P
‘Moeness Amin P
Center for PI‘ {A 71 } = PI‘ {A ) } — ']_
Advanced 4OP »
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Continue

R :E{x(n)xH(n—jP)Al}Pr{Al}

XX

+E{X(n)XH (n—jP) Azl} Prid,|

+E{X(n)XH (n—jP) Azl} Prid,|
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MODIFIED CROSS-SCORE
RECEIVER (contd)

m The cross-SCORE based receiver does
not have the ability to mitigate multipath.

m Since multipath often comes from near
the horizon while the GPS satellites are
located above the horizon, adding
constraints to the previous receiver can

mitigate multipath entering the receiver
from near the horizon.
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MODIFIED CROSS-SCORE
RECEIVER (contd)

m Define the matrix containing steering
vectors associated equally spaced
directions covering solid angle Q near the

horizon
=[b(r)) - b(y,)]
m The modified cost function on f
f'R_f

— X : He _
£ = arg max (7R f subjectto B"f =0

Moeness Amin

Center for (P ) (P ) H
Advanced R o R R XX R XX

. 27
Communications



MODIFIED CROSS-SCORE
RECEIVER (contd)

m Let A be the matrix that spans the null
space of B such that B"A=0 .

m Let a be a vector such that f =Aa .

m Using the vector a, the constrained
maximization problem can be transformed
iInto the unconstrained maximization
problem as

0 = arg max aHAHﬁxan
S a7 AT R_Aa
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MODIFIED CROSS-SCORE
RECEIVER (contd)

m Solving the above unconstrained
generalized eigenvalue problem lead to a
which is given by the eigenvector
associated with the largest eigenvalue. The
beamformer f . be obtained

opt
correspondingly.

m The beamformer w, is then given by

I » 3 S » 100, I » 3% » 100,
Wopt i RxxRxx fopt i RxxRxx A
Moeness Amin
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IMPLEMENTATION ISSUES

m Sample estimates have to be used
instead of the exact ones

n | A 1
R, =X, XI, RY =X, X,

— Data sample matrix
Xy =[x(n), -, x(n—(N-1))]
— Reference sample matrix

Mwﬁ;ij:ﬂm XNref — [X(I’l R ]P)9 B X(n R (N R 1) N ]P)]
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IMPLEMENTATION ISSUES (contq)

data and reference blocks can be
used to improve the time-averaging:

GPS symbol
Data block 1 Data block 2

N

1 G
R, =22 Xy (@X{(g)/N
g=I

n ] &
R =22 X (@)X (9)/ N
g=1

31



COVARIANCE ESTIMATION (conta)

m The expected values of estimates

~ P L.
R = (1 - ]—j R_, one block estimation

20P
Rfcf(); L R, G blocks estimation
20P

m The corresponding variances of estimates

A M ’ MQ1+o =\
var[RV} = WVHo)g & (+Jv)Rv—(R§f))

- 0 2 2 — )
Var{Rifg;}:(l—z P o ISP j MN+o,)p (Mlro)p —(Rfjg;)
Moeness Amin 20P 20GP N
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SIMULATION RESULTS

m Linear uniform array with A/=7 sensors.

m GPS navigation symbols in BPSK format;
C/A-code with processing gain of P=1023.

m N=800 samples in both the data and
reference blocks.

m Jammers are generated as broadband
binary signals with the same rate as the
C/A-code.

m Multipath signal power is one-fifth of the
direct-path signal power.
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Critical Case

m Beam pattern without interference -
split data block (G=2, SNR=-30 dB)

GPS symbol
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IMPROVED!

m Beam pattern without interference (G=7,
SNR=-30 dB)

o

G=7 data blocks

|

G=T7 reference blocks
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FOR ALL SATELLITES

m With multiple satellites in the field of view
(M=9, SNR=-30 dB)
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SIMULATION RESULTS (conta)

m Comparison with MMSE method (spatial
processing only (SINR=-33 dB, JSR=30 dB)

m
e
£
£
©
o

Moeness Amin
p -80 -60  -40  -20 0 20 40 60 80
Center for AOA in degrees
Advanced

.. 7
Communications 3



Performance

m Circular array: M=7 sensors, SNR=-30 dB and JSR=30
dB.

Satellite
(20, 10)

10
0]

0]

8]
T
1
£
©
O

20~

| Jammer- |, e Jamier

Azimuth - degree 100 -, ]
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Jammers with Similar Coherence

m Jammers with the same structure as the
GPS signals (satellite at 30 degree and
two jammers at 10 and 50 degree)

8
6
4
2
0
-2
-4
-6
-8

|
[EY
o

|
=
N
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MULTIPATH!

m In the presence of multipath (satellite at
30 degree, one multipath at 8 degrees)
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1-chip delay 5-chip delay
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SIMULATION RESULTS (conta)

m Comparison between the original and modified
approaches in the presence of multipath (10
degree, SNR = -30 dB, 1/5 power)
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—— Modified cross—SCORE
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20
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SIMULATION RESULTS (conta)
m Synchronization (SNR=-25 dB, JSR=30 dB)

-20 0 20
AOA in degrees

Normalized crosscorrelation

¢ < < o o o
Normalized crosscorrelation
o o o o

o
w
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SIMULATION RESULTS (contq)
m Synchronization (SNR=-25 dB, JSR=50 dB)

Gain in dB
1

-80 -60 -40 -20 0 20 40 60 80
AOA in degrees
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CONCLUSIONS

m Presented a novel self-coherence based
GPS anti-jam receiver.

m The receiver utilizes the inherent self-
coherence feature of the GPS C/A signal.

m The proposed receiver requires neither the
knowledge of the transmitted GPS signa
nor the location of the satellite.

m [he proposed receiver is able to suppress a
large class of interference as long as the
iInterferers do not have the same periodic
structure as the C/A signal.
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