Implications of HDTV Technology on Circuit and System Design

John Lopinto
President
Communications Specialties, Inc.

www.commspecial.com
Today’s Topics

- HDTV Standards for Broadcast Applications
- HDTV Implications on Broadcast Facilities
- HDTV Implications on Consumer TV
- Worldwide HDTV Activities
A Little Terminology

- **SD**: Standard Definition TV
 - The TV we’ve known and loved for the past 55 years.
 - Based on the NTSC or PAL standards
- **HD**: High Definition TV
 - Dozens permutations of resolution and timing
 - Most common “1080i” and “720p”
- **3G-HD**: The transmission of full 1080p/60 uncompressed HDTV over a single link
HDTV Standards

• Standard Definition (SD)
 – ITU-R BT-601
 • Defines how video is represented in a digital manner
 • Samples color information half as often as luminance (4:2:2)
 – SMPTE 259
 • Defines how BT-601 is then transmitted in a serial manner
 • Applies to both PAL and NTSC timing formats
HDTV Standards

• High Definition (HD) - Uncompressed
 – Several standards define HD resolutions
 – SMPTE 274: 1920 x 1080
 • 1080i and 1080p
 – SMPTE 260: 1920 x 1035
 • 1035i
 – SMPTE 296: 1280 x 720
 • 720p
 – SMPTE 295: 1920 x 1080 @50 Hz
 • 1080i/50
HDTV Standards

• Audio and Data for HD
 – SMPTE 299: 24-bit audio format
 • How AES3 digital audio is mapped into HD stream – SMPTE 292
 • Up to 16 audio channels
 – SMPTE 348: General packet data transport within SMPTE 292
HDTV Standards

• High Definition (HD)
 – Different frame rates are defined for various applications and backward compatibility with NTSC and PAL
 – In Hertz: 60, 59.94, 50, 30, 29.96, 25, 24, 23.98
 • Some are interlaced (i), some progressive (p)
 – Not all spatial resolutions are defined at all frame rates
HDTV Standards

• High Definition (HD)
 – One standard defines HD transmission
 • SMPTE 292
 – Defines how the video, audio and data standards are transmitted in a serial manner over copper
 – Defines other electrical parameters
 – Rise time, jitter, amplitude
 • Defines the valid combinations of resolution and frame rate
HDTV Standards

• High Definition (HD)
 – SMPTE 292
 • Defines the transmission Data Rate (uncompressed)
 – 1.485 Gb/s
 – 1.485/1.001 Gb/s
 • 1.485 Gb/s is used for whole number vertical sync frequencies
 – 60, 50, 30, 25, 24 Hertz
 • 1.485/1.001 Gb/s is used to sync (genlock) with NTSC
 – 59.94, 29.96, 23.98 Hertz
HDTV Standards

• 3Gb/s High Definition (3G-HD)
 – SMPTE 424
 • Defines the Data Rate
 – 2.97 Gb/s
 – 2.97/1.001 Gb/s
 • Supports 1080p/50 and 1080p/60
 • Uses just one coax or fiber signal path
 – Single-link
 • Some facilities are installing for the future
HDTV Standards

- Fiber Optics for HD and SD
 - SMPTE 297: One standard defines fiber optic transmission for 3G-HD, HD and SD
 - LC connector is “preferred”, others are “optional”
 - Defines: jitter, rise time, amplitude and data rate accuracy for HD and SD serial data transmitted over fiber
HDTV Standards

• A Few Observations
 – None of these resolutions have any compatibility with computer resolutions
 – Only one HD resolution, 1920x1080, matches the native resolution of some of the TVs on the market today
 – Worldwide preference is for 1080i/50 (PAL countries) and 1080i/59.94 (NTSC countries)
 – US is a mix of 1080i and 720p
HDTV Standards

• A Few Observations
 – 1080i broadcasters: CBS, NBC, HBO, Showtime, SNY, YES
 • 1/3 more detail in image than 720p (movies)
 • Frame rate is only 29.96i frames/second
 – 720p broadcasters: ABC, FOX, ESPN
 • Frame rate is 59.94p frames/second
 • Good for fast motion (football, NASCAR)
HDTV Implications on Broadcast Facilities

• Compatibility with SD Broadcasts
 – There is still the need to broadcast in SD
 – Impractical to do two separate SD and HD productions
 – Produce in HD, do SD “4:3 cutout” for SD
 – Produce in SD, do 4:3 up conversion to HD raster
 • No increase in detail, but image has HD timing
 – Lot’s of new equipment needed to perform conversions either way
HDTV Implications on Broadcast Facilities

• Up converting SD Material
 – Most remote facilities are still SD 4:3
 – Stretch, crop, anamorphic lens, 16:9 within 4:3 up convert …???
 – Computer source material is mostly 4:3
 – Spatial resolution conversion needs to be dealt with properly
 • Target resolution has more BW than source
HDTV Implications on Broadcast Facilities

• Genlocking the Equipment
 – One timing reference is needed for both SD and HD signals within facility
 – HD equipment will reference timing to NTSC or PAL composite video
 • Vertical sync frequencies must be the same
 – Equipment must have wide genlock phasing range – one vertical period
HDTV Implications on Broadcast Facilities

• Transmission Bandwidth
 – Some coax cable cannot handle the increased BW of HD (6x that of SD)
 – Practical distances for “HD” grade coax with equalization at receiving device
 • 300m for HD
 • 100m for 3G-HD
 – Fiber will be used as backbone for facilities
HDTV Implications on Broadcast Facilities

• Audio – Video Skew
 – Frame synchronizers and compressed video will be more commonplace
 – Audio could lead video by 10s or 100s of milliseconds as it propagates through plant
 – Intelligent audio delay equipment will be needed for synchronization
HDTV Implications on Consumer Televisions

- Image Data Compression
 - MPEG2 used for terrestrial broadcast
 - MPEG4, H.264 used for most all other modes of distribution
 - Quality can vary greatly depending on BW allocated for a particular transmission
 - Compression ratios of 100:1 or greater
HDTV Implications on Consumer Televisions

• The Native Resolution Problem
 – Most all “HD” TVs today are based on computer, not HD, resolutions
 – 720p sets are really 1366x768
 – 99% of all plasmas are 1366x768 or 1024x768 or 1024x1024
 – Excellent circuits are needed for spatial scaling and de-interlacing
HDTV Implications on Consumer Televisions

• The Trend in TV Displays
 – Most newer HDTVs have a native resolution of 1920x1080 ("full HD")
 • Progressive scan
 • Solves the scaling problem but not the de-interlacing problem
 • Hint: fix the set-top box to 1080i so the display does not have to scale spatially
HDTV Implications on Consumer Televisions

• The HDMI Interface
 – Combines digital HDTV and audio on one connector
 – Some implementations will support 1080p
 – Will become essential for HD DVD players
 • Blu-Ray and HD-DVD
 – A new version, v1.3, will support 30-bit color depths (presently 24-bit)
 – In practice, this is a very “quirky” interface for several reasons
Worldwide HDTV Activities

- **US**: active transition to HD
 - Feb 17, 2009 for giving up analog channels
- **North Asia**: active transition to HD
 - Northern China driven by 2008 Olympics
- **Southern Asia**: slow to adopt
- **Europe**: Making the transition by gov’t mandate – being pushed by satellite
- **South America, Aus/NZ**: Almost nothing
Worldwide HDTV Activities

- HDTV Distribution is Changing
 - Compression algorithms allow for many more distribution channels than analog TV
 - Mobile phones (Europe and Japan)
 - The Internet (Apple iTV, YouTube)
 - Via Telephone lines
 - Fiber to the Home (FTTH)
Conclusions

• Follow the SMPTE standards in guiding your designs
• SD and HD equipment and facilities will continue to co-exist for years to come
• Fiber will become commonplace
• HDTV consumer products need to consider future trends and be made “idiot-proof”
• HDTV will be distributed in more ways than traditional TV outlets