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Introduction

Generalized Passive Filter
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N=3 Butterworth
Normalized 3dB at 1 Rad/s

Pole Zero Plot on j-Omega Axis 



Most Popular Filter Polynomial Types

Butterworth
Chebyshev
Linear Phase 
Elliptic Function



Butterworth

The Butterworth approximation  based on the assumpt ion that a flat response 
at zero frequency is more important than  the respo nse at other frequencies.
Normalized transfer function is an all-pole type
Roots  all fall on a unit circle 
The attenuation is 3 dB at 1 rad/s.

Normalized Frequency 
Response

Roots on j-Omega Axis

N=5 Butterworth LPF and its Dual



Butterworth LC Element Values (Representative Table , Extensive 
tables in reference)



Butterworth Normalized Pole Locations



Chebyshev

If the poles of a normalized Butterworth low-pass t ransfer function were moved to the
right by multiplying the real parts of the pole pos ition by a constant kr and the imaginary
parts by a constant kj where both k’s are <1, the poles would lie on an ellipse 
instead of a unit circle.

The frequency response would ripple evenly. 
The resulting response is called the Chebyshev or Eq uiripple function.

Chebyshev filters are categorized in terms of ripple  (in dB) and order N.



Chebyshev Low-Pass Filter



Linear Phase Low Pass Filters

Butterworth filters - good amplitude and transient characteristics

Chebyshev family of filters- increased selectivity but poor transient behavior 
Bessel transfer function - optimized to obtain a linear phase, i.e., a maximally 
flat delay

Frequency response- Much less selective than other filter types

The low-pass approximation to a constant delay can be expressed as the 
following general Bessel  transfer function:
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Linear Phase Low-Pass Filters

� Other Linear Phase Filter Families
– Gaussian
– Gaussian to 6dB
– Gaussian to 12dB
– Linear Phase with Equiripple Error (0.05°and 0.5°)
– Maximally Flat Delay with Chebyshev Stop-Band

Extensive tables are available in the reference



Effects of Non-Linear Phase

Amplitude and Phase Response of
N=3 Butterworth Low-Pass Filter

Group Delay of N=3 Butterworth Low-Pass Filter

Square Wave containing Fourier Series
a) Equally delayed components
b) Unequally delayed components



Elliptic Function

All filter types previously discussed are all-pole networks.
Infinite rejection occurs only at the extremes of t he stop-band.
Elliptic-function filters have zeros as well as pol es at finite frequencies.
Introduction of  transmission zeros allows the stee pest rate of descent 
theoretically possible for a given number of poles.  However the highly 
non-linear phase response results in poor transient  performance.



Normalized Elliptic Function Low-Pass Filter

RdB = Ripple in dB up to cut-off (1 Rad/sec)
Amin= Minimum Stop-Band Attenuation in dB
ΩS    = Normalized Frequency (Rad/sec) to achieve A min (Steepness Factor)



Frequency and Impedance Scaling from Normalized Circuit

frequency reference existing

frequency reference desired
FSF =

Frequency Scaling

Normalized N ==== 3 Butterworth low-pass filter normalized to 1 rad/sec : 
(a) LC filter; ( b) active filter; (c) frequency response



Denormalized low-pass filter scaled to 1000Hz: (a) LC filter; ( b) active filter; (c) frequency response.

All Ls and Cs of the normalized Low-Pass filter are divided by 2 π FC where 
FC=1,000 Hz

Note Impractical Values



Impedance Scaling

A transfer function of a network  remains unchanged  if all impedances are 
multiplied (or divided) by the same factor.

This factor can be a fixed number or a variable, as  long as every impedance 
element that appears in the transfer function is mu ltiplied (or divided) 
by the same factor.

Rule



Impedance scaling can be mathematically expressed as

R′′′′ ==== ZxR

L′′′′ ==== ZxL

C’=
C

Z

Frequency and impedance scaling are normally combined into one step rather than performed 
sequentially. The denormalized values are then given by

L′ =    ZxL/FSF

C’=
Z x FSF

C

Impedance-scaled filters using Z=1K : (a) LC filter; ( b) active filter.



Bartlett’s  Bisection Theorem

A passive network designed to operate between two e qual terminations can
be modified to work between two unequal termination s and still have  the 
same Transfer Function (except for a constant multi plier) if the network 
is symmetrical. It can then be bisected and either half scaled in impedance.

Normalized N=3 LPF Bisected LPF

Right half impedance scaled by 1.5 Re-combined LPF

Resulting filter frequency 
and impedance scaled to 200Hz, 
1K Source, 1.5K Load



Active Low-Pass Filters

Unity gain Active Low-Pass N=2 and N=3

12

1
)(

2
2

21 ++
=

sCsCC
sT

N=2 Section

1
21

1
)(

22

2

22
+

β+α

α
+

β+α

=

ss
sT

α
=

1
1C 222

β+α

α
=C

1

1
)(

23 +++
=

sCBsAs
ST

N=3 Section

A = C1C2C3

B = 2C3(C1 + C2)
C = C2 + 3C3

Values can be frequency and Impedance scaled



Design of D-Element Active Low-Pass Filters and a 
Bi-Directional Impedance Converter for Resistive Loads

Generalized Impedance Converters (GIC)

Z11= Z2Z4

Z1Z3Z5
By substituting RC combinations for Z1 through Z5
a variety of impedances can be realized. 



sCR1R3R5

R2

Z11=

If Z 4 consists of a capacitor having an impedance 1/sC where s=јω
and all other elements are resistors, the driving point impedance becomes:

The impedance is proportional to frequency 
and is therefore identical to an inductor having an inductance of:

Note: If R1 and R2 and part of a digital potentiometer the value of L can be digitally programmable.

CR1R3R5

R2

L=

GIC Inductor Simulation



If both Z 1 and Z3 are capacitors C and Z2,Z4 and Z5 are resistors,
the resulting driving point impedance becomes:

R5

s2C2R2R4
Z11=

An impedance proportional 
to 1/s2 is called a D Element.

1
s2DZ11= where: C2R2R4

R5
D  =

If we let C=1F,R2=R5=1 Ω and R4=R we get D=R so:

1
s2RZ11=

If we let s=јω the result is a Frequency Dependant Negative Resistor FDNR

1
-ω2RZ11=

D Element



D Element Circuit 



A transfer function of a network  remains unchanged if all impedances 
are multiplied (or divided) by the samefactor. This factor can be a fixed 
number or a variable, as long as every impedance element that appears 
in the transfer function is multiplied (or divided) by the same factor.

The 1/S transformation involves multiplying all impedances in a 
network by 1/S.

Rule



The 1/S Transformation



Normalized Low-Pass filter 1/S Transformation

Realization of D Element

Frequency and Impedance Scaled Final Circuit 

Filter is Linear Phase ±0.5° Type

Design of Active Low-Pass filter with 3dB point at 400Hz using D Elements



Requirements: 0.5dB Maximum at 260Hz
60dB Minimum at 270Hz
Steepness factor=1.0385

Normalized Elliptic Function Filter
C11 20 θ=75°
N=11 Rdb=0.18dB Ωs=1.0353   60.8dB

Normalized
Elliptic Function Filter

1/S Transformation

Realization of D Elements 

Elliptic Function Low-Pass filter using GICs



Frequency and Impedance Scaled Final Circuit

Note: 1 meg termination resistor is needed to provide DC return path.



+ +

R RR R

Rs

Rs CGIC

CGIC

Value of R Arbitrary
Rs is source and load resistive terminations
CGIC is D Element Circuit Capacitive Terminations

Bi-Directional Impedance Converter for Matching D E lement Filters Requiring
Capacitive Loads to Resistive Terminations



High–Pass Filters

Normalized Reciprocal Low-Pass High-Pass Relationsh ip



Passive High-Pass Filters

Low-Pass to High-Pass Transformation for Normalized  Values

Lp
hp

1

L
C =

LP
hp

1

C
L =

Replace Low-Pass Values by Reciprocal Components
Then frequency and impedance scale to desired cut-o ff



Active High-Pass Filters

To convert a normalized  active low-pass filter into  an active high-pass 
filter replace each resistor by a capacitor having t he reciprocal value and 
vice versa. The filter can then be scaled to the des ired cut-off  and 
impedance level.

This conversion does not apply to feedback resistor s that determine an 
amplifiers gain which applies to some active configur ations.



Band-Pass Filters

Low-Pass to Band-Pass Transformation

This figure shows the relationship of a low-pass fi lter when transformed into a band-pass filter. 
The response at frequencies of the low-pass filter results in the same attenuation at 
corresponding bandwidths of the band-pass filter.



Band-Pass Filters

Band-Pass Transformation Procedure for LC Filters
1) Design a low-pass filter having the desired Bandw idth of the band-pass filter and 

impedance level.
2) Resonate each inductor with a series capacitor and resonate each capacitor with 

a parallel inductor. The resonant frequency should be the desi red center 
frequency of the band-pass filter.

Normalized N=3 Butterworth Low-Pass Filter Scaled to 3dB at 100Hz and 600-ohms

Resulting Band-Pass Transformationπ
Fo=

1

2 LC



Wide Band Band-Pass Filters

Cascade of Low-Pass and High-Pass Example of Wide Band Band-Pass Filter

Effect of Interaction for Less Than an Octave of Se paration of Cut-Offs

To prevent impedance interaction between a passive low-pass filter 
and  high-pass filter, a 3dB Attenuator between fil ters is helpful.



Band  Reject Filters

This figure shows the relationship of a high-pass f ilter when transformed into a band-reject filter. 
The response at frequencies of the high-pass filter  results in the same attenuation at 
corresponding bandwidths of the band-reject filter.



Band-Reject Filters

Band-Reject Transformation Procedure for LC Filters
1) Design a high-pass filter having the desired Band width of the band-reject filter 

and impedance level.
2) Resonate each inductor with a parallel capacitor and resonate each capacitor 

with a series inductor. The resonant frequency should be the desi red center 
frequency of the band-reject filter.

a) N=3 Normalized 1dB Chebyshev LPF
b) Transformed HPF
c) Frequency and Impedance Scaled HPF (500Hz BW)
d) Resonate inductors and capacitors
e) Resulting Response



This circuit is in the form of a bridge where a signal is applied across 
terminals’ 1 and 2  the output is measured across terminals’ 3 and 4. At ω=1
all branches have equal impedances of 0.707 ∠∠∠∠-45°so a null occurs 
across the output.

High-Q Notch Filters



The circuit is redrawn in figure B  in the form of a lattice. Circuit C is the 
Identical circuit  shown as two lattices in parallel.



There is a theorem which states that any branch in series with both the 
ZA and ZB branches of a lattice can be extracted and placed outside the lattice. 
The branch is replaced by a short. This is shown in figure D above. The 
resulting circuit is known as a Twin-T. This circuit has a null at 1 radian for the 
normalized values shown.



To calculate values for this circuit pick a convenient value for C. Then

R1=
1

2πfoC

The Twin-T has a Q (fo/BW3dB ) of only ¼ which is far from selective.

Note: R-source <<R1      R-load >>R1



Circuit A above illustrates bootstrapping a network β with a factor K. 
If β is a twin-T the resulting Q becomes:

Q =

If we select a positive K <1, and sufficiently close to 1, the circuit Q can be 
dramatically increased. The resulting circuit is shown in figure B.

1
4(1-K)



C L

C

ωωωωrLQ/4
≡≡≡≡

at resonance

ωωωωrLQ/2ωωωωrLQ/2

-ωωωωrLQ/4

ωωωωrLQ/4

Impedance of a center-tapped parallel resonant circuit at resonanceis  ωωωωrLQ
total and ωωωωrLQ/4 from end to center tap (due to N2 relationship). Hence a 

phantom negative resistor of -ωωωωrLQ/4 appears in the equivalent circuit which 
can be cancelled by a positive  resistor of  ωωωωrLQ/4 resulting in a very deep null 
at resonance (60dB or more).

Bridged-T Null Network



T(s)
ΣIn

Out

1

+1

T(s) can be any  band-pass circuit having properties of unity gain at fr,
adjustable Q and  adjustable fr.

Adjustable Q and Frequency Null Network



If   T(s) in circuit A  corresponds 
to a band-pass transfer function of:

The overall circuit transfer 
function becomes:

Out
In

The middle term of the denominator has been modified so the circuit Q is given by Q/(1-β) where 

0<β <1. The Q can then be increased by the factor 1/(1-β) . Note that the circuit gain is increased
by the same factor.

Q Multiplier Active Bandpass Filters



A simple implementation of this circuit is shown in figure B.
The design equations are:

First calculate β from β= 1 - Qr

Qeff

where Qeff is the overall circuit Q and Qr is the design Q of the bandpass section.

The component values can be computed from:

R1b=
R1a

2Qr
2-1

Where R and C can be conveniently chosen. 



C1

C2

L

NC2

C2 N(N-1)

L

N2

N=1+
CB

CA

Advantages :
Reduces value of L
Allows for parasitic capacity across inductor

CA

CB

LA

CA

N

CA(1-1/N)
N2LA

Advantages:
Increases value of L 

N=1+
C1

C2

Some Useful Passive Filter Transformations to Impro ve Realizability



This transformation can be used to reduce the value of a terminating resistor
and yet maintain the narrow-band response.

Narrow Band Approximations



The following example illustrates how this approximation can reduce the source impedance of a filter. 



An inductor can be used as an auto-transformer by adding a tap

Resonant circuit capacitor values can be reduced 

Using the Tapped Inductor



Intermediate branches can be scaled in impedance

Leakage inductance can wreak havoc



Effect of leakage inductance can be minimized by splitting capacitors which adds additional poles



EOUT
EOUT

SCR2

EOUT

SCR2R3

i =

EOUT
EOUT

SCR2

EOUT

SCR2R3

i =
L=CR2R3

State Variable   
Bandpass Filter

Q=Fo/3dbBW

R1=2πF0LQ

Gain@Fo=-R1/R4



Attenuators

Minimum Loss Resistive Pad For Impedance Matching

R
s 1-

R
L

R
s

R
1
=

RL

R2=

1-
RL

Rs

R1(R2+RL )

R2RL

+1
Voltage Loss dB=20Log

10

R
s

R
L

Power Loss dB= Voltage Loss dB - 10 Log10

R s
R1

R2 RL

R s RL

R s>RL



Symmetrical T and π Attenuators
dB/20 

K= 10

For a Symmetrical T Attenuator

ZR1 =
K+1

K-1 2 Z K
R 3=

K 2- 1

R1

R3

Z Z

(a)

R3

R1/2 R1/2

R1/2 R1/2

Z Z

(b)

R1

Unbalanced Balanced



For a Symmetrical π Attenuator

(a) (b)

R1

R3

Z Z
R1

Z Z

R3/2

R3/2

R1
R1

ZR  1= K+1
K-1

ZR 3=
K2-1
2K

Unbalanced Balanced



T and PI Attenuators at 500-ohms Impedance Level
Values can be scaled to other impedances



Bridged T Attenuator

R1

Ro
Ro

R2

Ro
Ro

R0
R1=

K-1
R2 =R0 (K-1)

K= 10 dB/20 where

Only R 1 and R2 change to vary attenuation and they change inversel y



xs

xs

ZZ

ZZ
A

−

+
= log20ρ

Return Loss

If ZS=RS , then a symmetrical attenuator of X dB designed fo r an
impedance of R S preceding any network insures a
minimum return loss of 2 X dB no matter what the im pedance
of the network, including zero or infinity (short o r open).

For example a 3dB symmetrical attenuator insures a minimum Return Loss of 6dB
even if terminated with a short or open.

Zs= standard or Ref Impedance
Zx= Impedance being Measured



Resistive Power Splitter

Port 1

Port 2

Port 3

Port K

R

R

R

R

N= total number of ports - 1    (N=K-1)

R 0R =
N+1

N-1

where R 0 is the impedance at all ports.

Power Loss dB = 10 Log10
1

N2



Miscellaneous Circuits and Topics



Constant Delay High Pass Filter Delay of N=3 Butterworth High-Pass Filter
3dB at 100Hz

Delay peaks near 3dB Cutoff and approaches zero at higher frequencies
Not acceptable if constant delay is desired in the Pass-Band



Solution

Constant Delay
Low Pass Filter

Delay = T

All-Pass
Delay Line
Delay = T

+

Low-Pass Filter has unity gain in stop-band

All-Pass Delay Line has unity gain

In pass-band of Low-Pass Filter signals are cancell ed in summer by subtraction

In stop-band of Low-Pass Filter the signal path is through the delay line



Simple Active Shunt Inductor

+1

R1

R2

C

L

Let R 2>>R1

L=R1R2C

π
FQmax=

1

2 C  R1R2

 Qmax=
1
2

 R2

 R1



All-Pass Delay Line Section

C

0.2432 F

1.605 F

1.605 H

1-Ohm 1-Ohm 

Flat delay  of 1.60 Sec within 1% to 1 Rad/S

π       2 F T total

1.6
N =

Round off to nearest higher N
Use N sections each scaled to delay of T total /N
Impedance scale to practical values

Use high-Q Inductors to avoid dips at parallel 
resonant frequency



Duality
Any ladder network has a dual which has the same tr ansfer function. 
In order to transform a network into its dual:
• Inductors are transformed into capacitors and vice versa having
the same element values (henrys into farads and vic e versa)

•Resistors are transformed into conductances ( ohms i nto mhos)
•Open circuit becomes a short circuit and vice versa
•Voltage sources become current sources and vice ver sa
•Series branches become shunt branches and vice vers a
•Elements in parallel become elements in series and vice versa

Note that the following table has schematics on bot h top and bottom which 
are duals of each other



Out of Band Impedance of Low-Pass and High-Pass Fil ters to Allow 
Combining

•The input and/or output impedance of a low-pass and  high-pass filter is determined 
to a great extent by the  last element.

•For example a low-pass filter having a series induc tor

at the load end has a rising impedance at that end i n the stop band (for rising frequencies). 

•A high-pass filter having a series capacitor at the  load end has a rising impedance 
In the stop band (for lower frequencies).

•This property allows the paralleling of low-pass an d high-pass filters with 
minimal interaction as long as the pass-bands don’t  overlap. By selecting odd or 
even order filters and/or by using a circuits’ dual,  the appropriate series 

terminating element can be forced.



Balanced Series  Inductors

Combined Shunt  Inductor
and Transformer

Low-Pass Filter
3dB at 4KHz

High-Pass Filter
3dB at 10KHz

Voice

DSL

Line

Simplified Low-Pass High-Pass Combining at Output

Practical Implementation in POTS Splitter



Wide Band Band-Reject Filter by  Low-Pass High-Pass Filters in 
Parallel The technique of connecting LC filters in parallel that have rising 

out-of-band impedance can be used to generate a wid e-band band-reject filer. 
Wide-band is generally defined as at least one octa ve between cut-offs.

Example having sufficient 
separation of cut-offs Effect of Insufficient Separation

Individual Responses Combined



REFERENCE:

Electronic Filter Design Handbook
Fourth Edition (McGraw-Hill Handbooks)
Arthur Williams (Author) 
Fred J. Taylor (Author) 

From Amazon 
http://www.amazon.com/

Or from McGraw Hill
http://www.mhprofessional.com/
Then enter Electronic Filter Design Handbook 
for search

This is the fourth edition of the Electronic Filter Design Handbook. This book was first
published in 1981. It was expanded in 1988 to inclu de five additional chapters on digital filters and
updated in 1995. This revised edition contains new material on both analog and digital filters. A
CD-ROM has been included containing a number of pro grams which allow rapid design of analog filters
from input requirements without the tedious mathema tical computations normally encountered. The 
digital filter chapters are all integrated with a p rofusion of MATLAB examples.

Additional reference: “Filter Solutions” Software  ht tp://www.filter-solutions.com/




