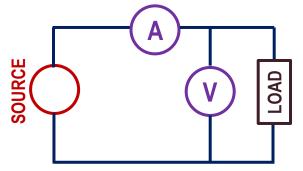


M. Nazrul Islam

Smart meter basics Smart meter technology Smart meter issues

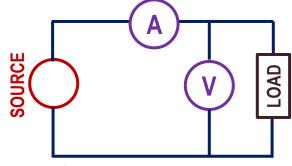
2


Smart Meter Basics

Electrical Power

Electrical power

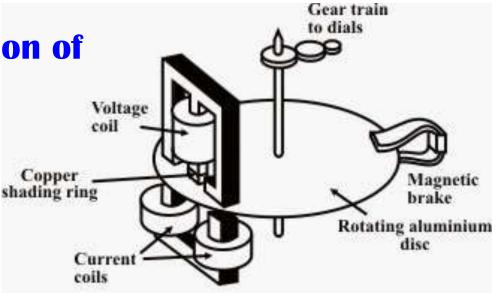
- Active/real power
- Reactive power
- Active/real power


A: Current Meter, V: Volt Meter

- $P = V \times I \times cos\phi = (volt) \times (amp) \times (power factor)$
- \circ V = voltage, I = current, ϕ = angle between V and I, $cos\phi$ = power factor
- W (watt), kW: unit of active/real power
- Reactive power
 - $P = V \times I \times sin\phi = (volt) \times (amp) \times (reactive factor)$
 - $\sin\phi = reactive \ factor$
 - **VAR: unit of reactive power**

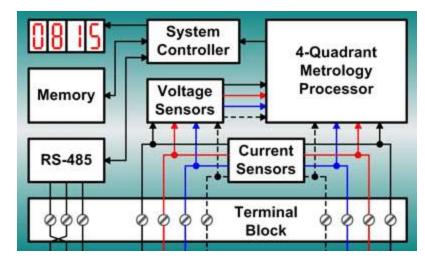
Electrical Energy

- Electrical energy
 - Total energy consumed by a load over a period of time
 - $\circ \mathbf{E} = \mathbf{P} \times \mathbf{t}$
 - **t = time**
 - Wh (watt-hour), kWh: unit of electrical energy
 - 1 kWh = 3,600,000 joules
- Cost of electrical energy
 - $\circ \mathbf{C} = \mathbf{E} \times \mathbf{\$}$
 - \$ = unit cost of electrical energy



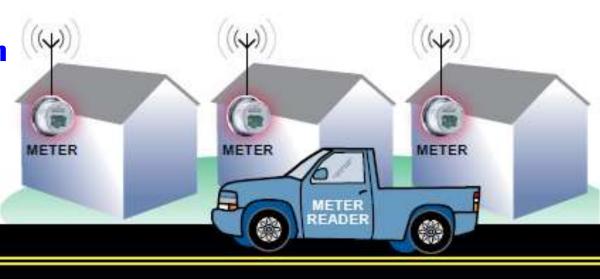
A: Current Meter, V: Volt Meter

- Measures the consumption of electrical energy
- Types
 - Analog meter
 - Digital meter
- Analog Meter
 - Based on electromechanical induction principle
 - Aluminum disc rotated by magnetic induction of two coils
 - Voltage/pressure coil
 - Current coil


Watt-hour meter.

Energy Meter

- Digital meter
 - Voltage and current are sampled and quantified
 - Digital signal processor calculates power
 - Integration over time yields energy
 - Energy data displayed on LCD
 - Can also measure power factor and reactive factor
 - Not influenced by external magnets or meter orientation
 - Highly reliable


Automatic Meter Reading

Automatic meter reading (AMR)

- Electronic meter reliable and accurate measurement
- Communication technology transmit data

Remote meter reading

- Walk-by
- Drive-by
- Networked system

Automatic Meter Reading

- Automatic meter reading (AMR)
 - Automatically collect consumption, diagnostic and status data
 - Transfer data to central database for billing, troubleshooting and analysis
- AMR components
 - Advanced metering infrastructure (AMI)
 - Remote meter reading
 - Management of energy and expenses
 - Communication network
 - Radio frequency (RF)
 - Power line carrier (PLC)

9

Smart Meter

- Electronic device capable of recording energy consumption and communicating with the utility for monitoring and billing
- Green technology
 - Allows utilities to moderate peak load and avoid fossil-fuel-based short-term energy

Smart Meter

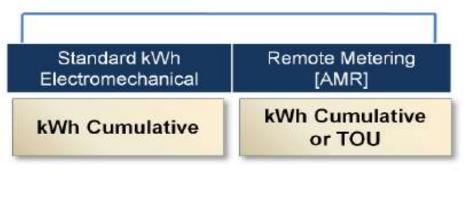
Components

- A meter capable of recording electricity consumed or generated by a customer
- A computer for logging and processing data and controlling interconnected devices
- A modem to communicate with nearby meters of network infrastructure

11

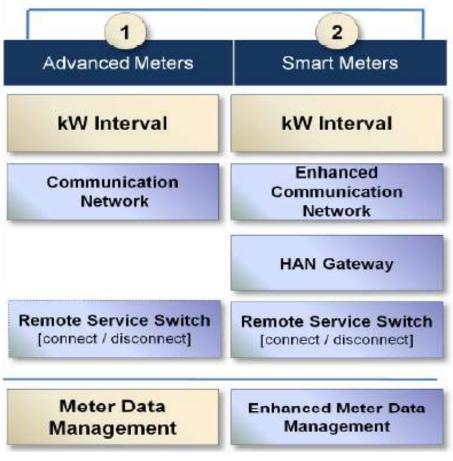
Smart Meter Features Smart Meter Features

- Efficient method for obtaining usage data
 - Eliminates physical meter reading
 - Manpower
 - Physical facilities
- Accurate meter reading
 - Highly efficient and accurate digital processor
 - Also up-to-the-minute information on consumption patterns
- Improved billing
 - Allows different pricing applications, like time-of-use
 - Transparency of "cost to read" metering


Smart Meter Features Smart Meter Features

Efficient energy management

- Energy management through profile data graphs
- Utility can manage/allocate supply in cases of shortages
- Accurate profile classes and measurement classes
- Improved procurement power through more accurate data – "de-risking" price
- Financial advantages
 - Less financial burden correcting mistakes
 - Less accrued expenditure
- Improved security
 - Improved security and tamper detection for equipment

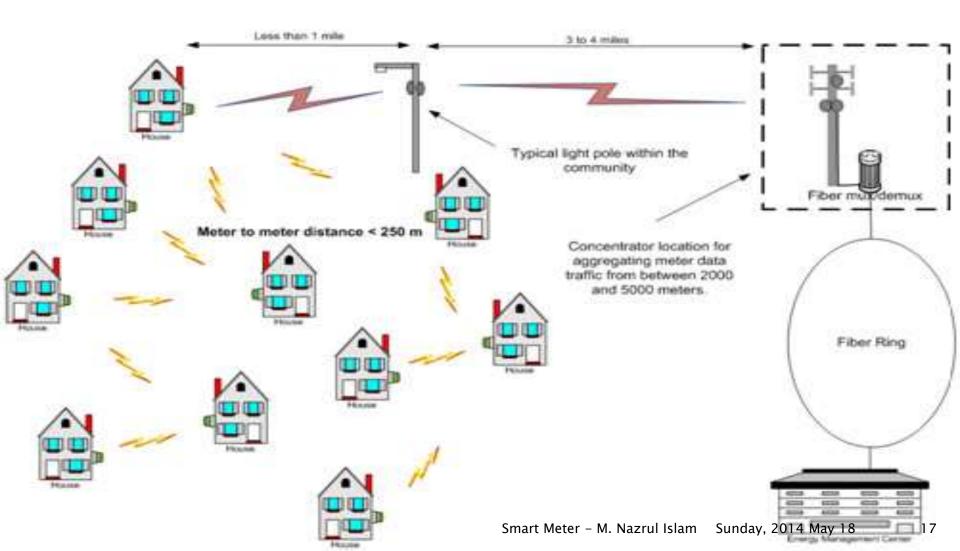


Traditional Meters

Advanced Metering Infrastructure

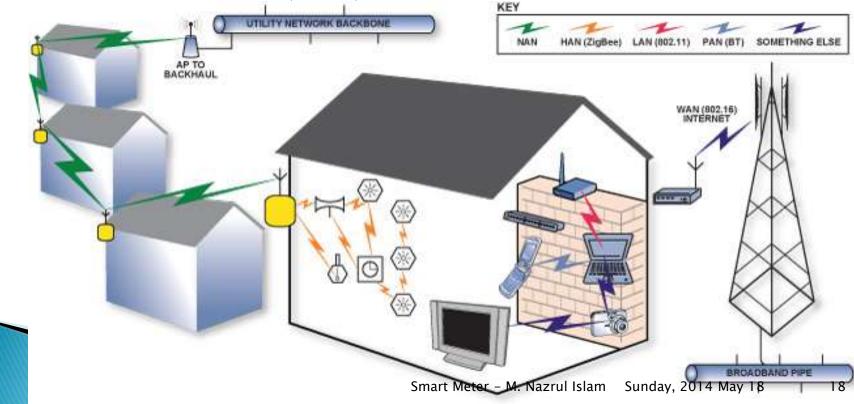
& Sustainability Center at Farmingdale State College

Smart Meter Technology



Smart meter technologies

- Communication
- **Protocols**
- Data management

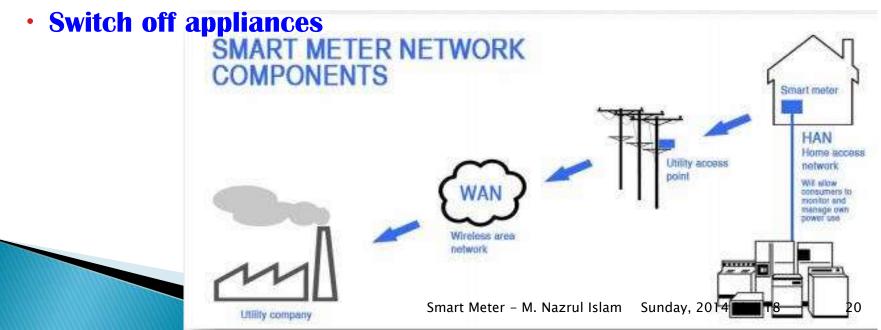


Communication Technology

Communication networks

- Home are network (HAN)
- Neighborhood area network (NAN)
- Wide area network (WAN)

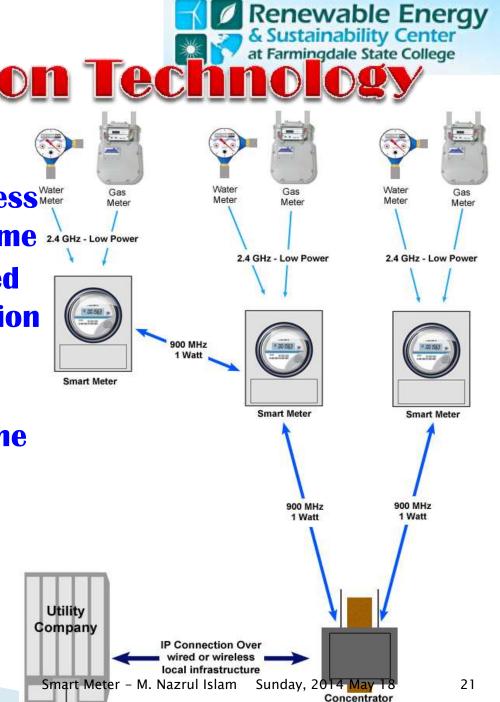
Communication Technology


Communication networks

- Home are network (HAN)
 - Equipment throughout the house are in wireless network with a central coordination and data collection node within the residence
 - Enables a household to receive data describing its electrical usage behavior and optimize energy usage efficiency
- Neighborhood area network (NAN)
 - Information from end users are collected through a NAN
 - Low-power transmitters and local receivers or data collectors
- Wide area network (WAN)
 - Data transmitted to service provider over a WAN for analysis and management

Communication Technology

Home area network (HAN)


- Utilities extend to customer's homes to actively manage transmission load
- Utilities may communicate to appliances at home via smart meter
 - Turn up thermostat

Communication Tec

RF technology

- Influenced by other wireless Water Gas signals in and around home 2.4 GHz - LOW Power
- High sensitivity is required for long signal transmission
- Communication protocol must comply with radio emission regulations in the country
- Typical frequencies: 900 MHz, 2.4 GHz, 5.8 GHz

Smart Meter Issues

Issues/Concerns

- Loss of privacy
 - Usage data may reveal information about user activities
- Loss of control
 - Utility can control amount allocated to users
 - Utility can remotely shut off users
- Security risks
 - Increased security risks from network or remote access
 - Greater potential for monitoring by other/unauthorized third parties
- Reduced reliability
 - More complicated meters, more potential for interference
 by third parties

Issues/Concerns

- Employment issue
 - Meter readers losing jobs
- Health concern
 - Health implications of exposure to RF signals within and around a residence
- Data management
 - Meter reading cycle increases significantly
 - Data volume increases
- Regulatory compliance
 - Appropriate governance and compliance arrangements are critical to satisfying regulatory requirements and relevant industry codes

- Smart meter is a gateway to the household
 - Access to customer information
 - Ability to control signals
- Security threats
 - Unauthorized access
 - Causing malfunction of equipment or system
 - Masquerading
 - Repudiation

- Security requirements
 - Confidentiality
 - Only sender and receiver shares information
 - Information is not disclosed to any unauthorized party
 - Integrity
 - Message is authentic
 - Has not been altered during transmission
 - Availability
 - Data/service is available to legitimate users
 - Nonrepudiation
 - Accountability of sender and receiver
 - Cannot deny they were part of information exchange

Renewable Energy

- Smart meter security
 - Confidentiality
 - Energy usage data represent user characteristics, activities
 - Physical threats may arise through disclosure of user data
 - Marketing firms may gather user data to sell their products
 - Integrity
 - Commands from utility be unaltered
 - Hacker may send disconnect commands
 - Availability
 - Smart meter data be available to utility for monitoring and billing
 - Software glitches, component failure, physical damage or tampering may cause unavailability
 - Nonrepudiation
 - Repudiation may cause shattering of energy billing

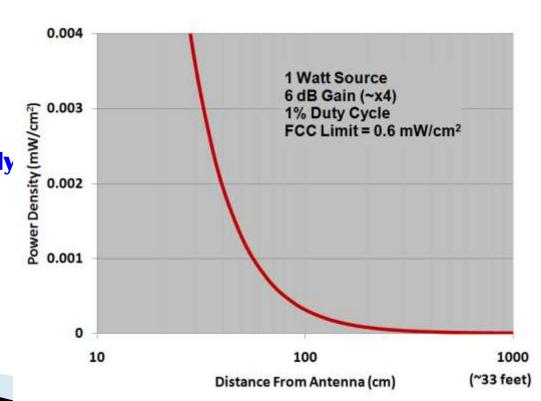
Renewable Energy

- Smart meter
 - Confidentiality of data accrued by smart meter
 - Integrity of commands sent from utility
 - Availability of smart meter
- Customer gateway
 - Interface into customers home and connected to important equipment
 - Load control and pricing signals command at the gateway have financial impact on user
- Communication network
 - Communication must be secure and reliable

- Concentrator
 - Processes data of a neighborhood
 - Can be rendered as a single point of failure
 - Needs be cost-effective but robust
- Headend
 - Control center for billing, curtailment, control
 - Data can be modified, dropped, replaced
 - Invalid data and control commands may be issued reset meters, connect/disconnect meters and distributed generation devices, change pricing signals and initiate demand response
 - Information gathered for future operations may repudiated
 - Strong IT security techniques and policies must be <u>adopted</u>

Health Concerns

- Research reveals the following
 - RF exposures, at sufficiently high levels, may increase the body temperature
 - No other specific biological effects have been confirmed or generally accepted
- **Exposure guidelines and standards**
 - Specify limits for the general public as well as for groups including workers
 - Requires training to be aware of their environments
- Exposure standards
 - Institute of Electrical and Electronics Engineers (IEEE, 2005)
 - International Commission on Non-Ionizing Radiation Protection (ICNIRP, 1998)
 - Federal Communications Commission (FCC, 1997)


Health Concerns

- Maximum permissible exposure (MPE) to RF
 - Plane wave equivalent power density expressed in units of milliwatts per square centimeter (mW/cm2)
- **Absorption of RF energy is a function of frequency**
- Specific Absorption Rate (SAR)
 - Time rate of energy deposited per mass of tissue
 - Usually stated in watts per kilogram of tissue (W/kg)
- Benchmark for behavioral disruption
 - Approximately 4 W/kg

Subject	Exposure Limit (W/kg)	Safety Margin
General public	0.4	10 times less
Workers	0.08	50 times less

Health Concerns

- **RF exposures**
 - Celle phones
 - Computer wireless network
 - Broadcast (radio/TV) signals
- Smart meter RF
 - Transmits only a few seconds in a minute
 - Operates at low power
 - RF field decays significantly with distance away from antenna
 - Average radiation is far below safety standards

- S. Kaplantzis and Y. A.Sekercioglu, "Security and smart metering," *European Wireless*, 2012
- "A perspective on radio-frequency exposure associated with residential automatic meter technology," *Electric Power Research Institute*
- A. Harney, "Smart metering technology promotes energy efficiency for a greener world," *Analog Dialogue*, 43-01, 2009
- D. J. Hess and J. Coley, "Wireless smart meters and public acceptance: the environment, limited choices, and precautionary politics," *Public Understanding of Science*, 2012
- Google Images
- Wikipedia

islamn@farmingdale.edu