DEVELOPING INSTRUMENT DRIVERS with LabVIEW

Terry Stratoudakis, PE
Certified LabVIEW Developer

ALE System Integration
Melville, New York
June 12, 2008
Overview

I. Why use Instrument Drivers?
II. Finding LabVIEW Instrument Drivers
III. Instrument Interfaces
IV. Instrument Driver Architecture
V. NI Instrument Driver Guidelines
VI. Calling Shared Libraries
VII. Example:
 I. Tektronix AFG 3252
 II. Tektronix DPO7104
I. Why use Instrument Drivers?

- Simplify Development
- Automate Testing
- Abstract Developer from Device Syntax
- Code Reuse
 - write once, use many times
Simplify Development with Instrument Drivers

Test Program

Intuitive high-level functions: ReadWaveform

Instrument Driver

- instrument addressing
- command string building
- range checking
- response string parsing
- data scaling
- storage in memory

Cryptic command strings: “set:vert_div:0.001”
II. Finding Instrument Drivers

- Manufacturer’s website
 - Not all provide drivers
 - Some offer only API (e.g. DLLs)

- NI Instrument Driver Network
 - Learn about drivers
 - Get help with developing drivers
 - Submit your driver to the network

- Request Instrument Driver
NI Instrument Driver Network

• Via web browser www.ni.com/idnet

• Find drivers from within LabVIEW
Search by Manufacturer

Find Instrument Drivers - Configure Search

Welcome to the NI Instr
Play Instruments

If you require
you can use the

Additional Keywords

NI Certified Drivers Only

< Back Search > Close Help

*Configure your search manually using these controls.

AD Data Systems
AOIP Instrumentation
Accuzone
Accu Therm Corp
Accubach
Abaron Research Corporation
Advantest
Aeroflex
Aerotech Unibex
Agilent Technologies
American Reliance
Analog Devices

Additional Keywords

<select one>

Agilent 33XX Series
Agilent 34401
Hewlett Packard

<select one>

Aptech
Associated Research
Audio Precision
Avtech Electrosystems
B+C Precision
BOC Edwards
Banco Instruments
Bhermon Electronics

<select one>

<select one>

Additional Keywords
Select Drivers to Install

<table>
<thead>
<tr>
<th>Driver</th>
<th>Driver Technology</th>
<th>NI Certified</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>ag3000 Instrument Driver</td>
<td>PnP</td>
<td>Yes</td>
<td>5.00</td>
</tr>
<tr>
<td>Driver for LabVIEW 7.0</td>
<td>PnP</td>
<td>Yes</td>
<td>3.87</td>
</tr>
<tr>
<td>Driver for LabVIEW 8.0</td>
<td>PnP Proj</td>
<td>Yes</td>
<td>4.08</td>
</tr>
<tr>
<td>ag33xxx Instrument Driver</td>
<td>PnP</td>
<td>Yes</td>
<td>NR</td>
</tr>
<tr>
<td>Driver for LabVIEW 8.0</td>
<td>PnP</td>
<td>Yes</td>
<td>NR</td>
</tr>
<tr>
<td>Driver for LabVIEW 7.1</td>
<td>PnP</td>
<td>Yes</td>
<td>NR</td>
</tr>
<tr>
<td>ag3458 Instrument Driver</td>
<td>PnP Proj</td>
<td>Yes</td>
<td>NR</td>
</tr>
<tr>
<td>Driver for LabVIEW 7.0</td>
<td>PnP</td>
<td>Yes</td>
<td>NR</td>
</tr>
<tr>
<td>ag439b Instrument Driver</td>
<td>PnP</td>
<td>Yes</td>
<td>3.87</td>
</tr>
<tr>
<td>Driver for LabVIEW 7.0</td>
<td>PnP</td>
<td>Yes</td>
<td>3.67</td>
</tr>
<tr>
<td>Driver for LabVIEW 8.0</td>
<td>PnP</td>
<td>Yes</td>
<td>NR</td>
</tr>
<tr>
<td>ag513xa Instrument Driver</td>
<td>PnP Proj</td>
<td>Yes</td>
<td>NR</td>
</tr>
<tr>
<td>Driver for LabVIEW 8.0</td>
<td>PnP</td>
<td>Yes</td>
<td>NR</td>
</tr>
<tr>
<td>Driver for LabVIEW 7.0</td>
<td>PnP</td>
<td>Yes</td>
<td>NR</td>
</tr>
<tr>
<td>ag516xx Instrument Driver</td>
<td>PnP Proj</td>
<td>Yes</td>
<td>NR</td>
</tr>
<tr>
<td>Driver for LabVIEW 8.0</td>
<td>PnP</td>
<td>Yes</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Open the folder(s) in this tree to reveal individual downloads for each result.
Install Drivers

Instrument Driver Installation

Installation successful. The driver is located in the directory listed below.
C:\Program Files\National Instruments\LabVIEW 8.5\instr.lib\Agilent 33XXX Series

Close
Use Installed Drivers
III. INSTRUMENT INTERFACES
Hardware Instrument Interfaces

- **Serial** (e.g. RS232)
- **GPIB** – IEEE 488
- **USB 1.1/2.0**
- **FireWire** – IEEE 1394
- **Ethernet** (e.g. IEEE 802.3)
- **Internal Computer Buses**
 - ISA/PCI/PCIe/PXI/PXIe
- **Industrial Networks**
 - DeviceNET, PROFIBUS, etc.
Software Instrument Interfaces
Programming With SCPI

- Standard Commands for Programmable Instruments
- Set of required commands (*IDN?, *RST, *TST?, …)
- Hierarchical command structure
- Example: “set:vert_div:0.001”
Virtual Instrument Software Architecture

- Platform and Interface independent
- Is the backbone of the IVI
- SCPI command set used

LabVIEW, LabWindows/CVI
Visual Studio with Measurement Studio

Instrument Drivers

Direct I/O (Instrument I/O Assistant)

GPIB Serial Ethernet PXI VXI USB

Instrument I/O Assistant – (demo)

- Interactive window uses VISA to help user communicate with SCPI commands
- Automatic and Manual parsing of received output
- Build I/O Steps, Test, and Verify
- Instr. I/O Assistant generates LabVIEW code.
Interchangeable Virtual Instrument (IVI)

IVI Classes
- Switch
- Power meter
- Oscilloscope
- DC power supply
- Digital Multi-Meter
- Spectrum analyzer
- RF signal generator
- Arbitrary waveform/function generator

User Application Test Program
- VB - LabVIEW - C/C++/C# - etc.

Test System Setup
- Maintenance Application

IVI (C or COM)
- Custom Specific Driver
- IVI-C Class Driver
- IVI-COM Class Compliant Specific Driver
- IVI-COM Class Compliant Specific Driver & Class Interface

I/O Library

Instrumentation Hardware

Courtesy of Interchangeable Virtual Instruments Foundation, Inc.
IV. Instrument Architecture
Instrument Driver VIs

- Initialize
- Configure
- Action/Status
- Data
- Utility
- Close
Application VIs

Diagram showing VISA session with waveform name, frequency (1000 Hz), and dup VISA session with error in (no error), user defined waveform, amplitude (0.1 Vpp), unit (Vpp:0), offset (0.00 V), user-defined waveform catalog, error query, pop-up message if an error occurred.
Instrument Driver Inputs & Outputs

- Instrument Descriptor
- VISA Sessions
 - A connection or link to a specific instrument
 - Created after instrument is initialized
 - Used throughout VI whenever you communicate with that specific instrument
- Error cluster
Putting It All Together

- Initialize instrument
- Perform operation(s)
- Close instrument
- Check error status
Controlling Multiple Instruments

- Similar to controlling one instrument
- Get details and make a flowchart
- Keep VISA sessions separate
- Use error clusters to define execution order
V. Driver Guidelines

1. Familiarize yourself with instrument
2. Driver Architecture and API Design
3. VIs: Names and Properties
4. Control/Indicators
5. VI Front Panels
6. Icon and Connector Panes
Driver Guidelines (continued)

7. Block Diagrams

8. Testing

9. Documentation

10. Example VIs

11. Palette Menu Files

12. Files and Documents to be Submitted
VI. Shared Library Overview

- A shared library is a software module containing executable code and data that can be called by applications or other shared libraries.
- Functions and data in a shared library are loaded and linked at run time.
- Shared libraries can be written in a variety of languages.
Shared Library Overview (continued)

- Shared libraries expose functions and data through a standardized interface
- Most types of shared library definition are similar to function definitions in the C programming language
- Shared libraries are often called by different names depending upon the platform where they are used
 - Windows = DLLs
 - MacOS = Frameworks
 - Unix = Shared Libraries
Calling Shared Libraries

- Two methods for calling a Shared Library from LabVIEW
 - Configure functions manually using the Call Library Function node
 - Allow LabVIEW to generate code by using the Import Shared Library wizard
Call Library Function Node

The image shows a dialog box for calling a library function. The dialog box has tabs for different sections: Function, Parameters, and Callbacks. The Function tab includes fields for specifying the library name or path, function name, and calling convention. The Parameters tab allows for specifying parameters. The Callbacks tab is not visible in the image. The dialog box includes buttons for OK, Cancel, and Help.
Shared Libraries Summary

- Call Library Function node to offer easy access to your shared libraries.
- To call a function in a shared library, you need to know the following:
 - The data type returned by the function
 - The calling convention used
 - The parameters to be sent to the function, their types and the order in which they must be passed
 - The location of the library on your computer
 - Whether the function can be called safely by multiple threads simultaneously
- The Shared Library Import Wizard allows you to automatically generate shared library calls if you have a header file for the library
VII. Sample Drivers – (demo)

- Tektronix AFG 3252
 - Dual Channel
 - Arbitrary/Function Generator

- Tektronix DPO7104
 - Digital Phosphor Oscilloscope
References

- National Instruments Instrument Driver network
 http://www.ni.com/idnet

- NI LabVIEW Instrument Driver Guidelines

- LabVIEW Instrument Guidelines and Information:
 LabVIEW -> Tools -> Instrumentation

- LabVIEW 8 Help > Controlling Instruments
 Available within LabVIEW and online at

- ALE System Integration website:
 http://www.aleconsultants.com

- Interchangeable Virtual Instruments Foundation, Inc.
 Your Guide to Getting Started with IVI Drivers
 http://www.ivifoundation.org/downloads/IVI_GSG_v_1.0.pdf
Terry Stratoudakis, P.E.

- B.S. and M.S. in Electrical Engineering, Polytechnic University
- NI Certified LabVIEW Developer and Certified Prof. Instructor
- New York State licensed Professional Engineer
- Former Assistant Adj. Prof. at NYC College of Technology
- Co-founder and President of ALE System Integration
- Worked for Underwriters Laboratories for six years
- Ten years LabVIEW and Test & Measurement experience
- Member of the IEEE, IEEE-LICN