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Outline Of the Talk

• Dynamic System Representation
• Operator Calculus
• Transformation
• Laplace Transform and Complex-Time Systems
• An Example of A Complex-Time System - SSB  
• Characterization of LTV Systems
• Operational Calculus in Two Variables
• Two-Dimensional Laplace Transform Techniques
• Representation of “Time” in System Theory
• A New Perspective
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System Representation in Time Domain

• The classical theory of variable systems is based on 
the solutions of linear ordinary differential equations 
with varying coefficients.  The varying coefficients are 
usually functions of an independent variable, also 
called the time variable.  The time variable is assumed 
to be real for physical systems.
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Operator Calculus Characterization
The fundamental (differential) equation of an LTV system is:
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The fundamental equation (for a system at rest) converts to:
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Using Operator Calculus
Observation 1 – As a result of using the operator calculus the 
homogeneous response has a pattern.  The response of homogeneous 
equation:
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Extending the Operator Calculus: Transformation
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)()(Expand the fundamental equation:

By generalization of the homogeneous solution, assume an 
exponential solution :
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Laplace Transform: An Operational Calculus Tool
Introduced by Laplace in 1771 and applied (modern use) by Oliver Heaviside.
Observation 2 – The Laplace transform is obtained as a result of extending the 
concept of the operator calculus for solving differential equations, which can 
describe the fundamental equation of physical (dynamic) systems.
Observation 3 – The solution exists if there are finite numbers M and σ0 such that :

0     )( 0 ≥∀< xMexf xσ

.Observation 4 – The independent variable x can represent any parameter (of the 
system); e.g., the “time.”
Observation 5 – s is the root of the characteristic equation
Hence it is a complex number (or better said, a complex variable) in general.

0)( =sF

Observation 6 – If x represents the independent time variable, then by 
definition, s represents the (complex) frequency in the transform domain.

Question 1 – Can f(x) be a complex function of x?
Question 2 – Can x represent an independent complex variable?
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Example of A Complex Time System
The single side band (SSB) amplitude modulation (AM) is an example of 
“complex-time” systems.  The SSB spectrum is obtained by shifting the 
spectra 
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Single Side Band System
It can be shown that: [ ])()(
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SSB System (cont.)

Representation of the transfer function
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The USB signal is:
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In time domain:
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SSB System: An Example 

For ωπω aeM −= 2)( find )(tm+ .
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Characterization of Linear Time Varying 
Systems

• Consider a single-input single-output (SISO) linear 
dynamic system characterized by the fundamental 
(differential) equation of a LTV system:
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Characterization of LTV systems (Cont.)
Characterization in Operator form:
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where:
y(t) = the output response signal
x(t) = the input (excitation) signal
ai(t) = system variable parameter, known continuous function of time
bk(t) = system time-varying parameter, known continuous function of time
Di = the ith differential operator (di /dti)
L(⋅,⋅)= the system output operator, known bivariate polynomial of time and 
differential operator
K(⋅,⋅)= the system input operator, known bivariate polynomial of time and 
differential operator
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Observations on the LTV systems
Observation 1 – In general, time clocks of the signal and system does not have to be 
synchronized; i.e., the (time) variables of the signal and systems can be independent
of each other. )(),()(),( txDKtyDL ττ =
Observation 2 – At any instant of “t” there is a response, which is a specified 
function of “τ”.
Observation 3 – At any fixed “τ” there is a response, which is a specified function of 
“t”.
Observation 4 – The system response is a function of variations of observation 
parameter “t” and application parameter “τ”.
Observation 5 – A zero-input, SISO LTV system described by:

0)(),( =⋅yDL τ
is a linear system that its natural frequencies are varying with “τ”.  In other words, 
the solutions of this equation are exponential functions of time with varying natural 
frequencies, as given by:
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where )(τα i is a function of variable coefficients of the fundamental equation 
of the system under consideration.
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Extension to Operator Calculus
τ

tθ

Lθ

p-plane

p

Observation 6 – We replace the real t by a complex p in a given f(t), as the (time) variables of 
the signal and systems can be independent of each other.  Thus, define a complex plane 
p-plane, as p = t +jτ.

Observation 7 – This is equivalent to converting a 1-D real variable function to a 2-D real 
variable function (function of a complex variable).

Observation 8 – This is equivalent to converting a 1-D real variable function to a 2-D real 
variable function (function of a complex variable).

Observation 9 – The line denoted as Lθ passes through the origin making an angle θ with the 
real axis on p-plane.
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Time-Frequency Representation By Operator Calculus

σ
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ω

s-plane
Observation 10 – The corresponding complex variable in the transform domain is s = σ +jω, 

and represents the variations in the s-plane.
Observation 11 – The extended 2D version of the Fourier transform, F2D , of f(t) (which can 

also be viewed as the 2DLT) is:   

Observation 12 – The line Lθ gives a 1-D profile of this 2-D function. The angle θ in the 
common definition of 1-D transform is zero.

Observation 13– The Fe is also a 2-D real variable function. The 1-D projection over Lϕ is 
the common 1-D Fourier transform over Lθ provided θ + ϕ = π/2.
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Real Variable Function Representation in p-Plane

Observation 14 – The common transform and its inversion are evaluated by 
integral over t-axis (pure real) and ω-axis (pure imaginary), respectively.

Observation 15 – We adopt the two-sided (bilateral) Laplace and Fourier 
transform.
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Operational Calculus in Two Variables

Modulated
Output

Modulating Input Χ

M(s1, s2 )

Observation 15 – The operational calculus in two variables, which is a generalization of 
the classical Laplace transform, was introduced during 1930 [P. Humbert, J.C. 
Jaeger], but appears to have remained largely unknown to the signal processing 
community (especially, for analog signal processing).

Observation 16 – The potential application of operational calculus in two variables to 
analysis of variable characteristic communication channels and systems has been 
realized.

Carrier Signal

Y(s1,s2)

H(s1,s2)
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Extension of the Operator Calculus to 
Solution of LTV Systems

Observation 6 – Considering the invariance property of 
)(),()(),( txDKtyDL ττ =

with respect to “t” and “τ”, and by analogy with the case of LTI systems, we 
interpret this equation as a two-dimensional system model, and shall use a two-
dimensional operator calculus (i.e. two-dimensional Laplace transform (2DLT)) to 
find its response. { } { })(),()(),( txDKtyDL ττ LL = 22 DD
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2DLT Solution of LTV Systems

),( τth)(tx )(ty

)()(),(),( τδδτδτ tttx == we denote the 2D transfer function, ),( 21 ssHIf 

of an LTV system as: n i

∑
=

==
i

i
i

i

ssA
ssB

ssL
ssKssH

0 12

12

21

21
21 )(

)(
),(
),(),(

Where:

{ }
( ) 2121221

2

2

1

1

21),(
2

1),(),( dsdseessH
j

ssHth
j

j

j

j

sts∫ ∫
∞+

∞−

∞+

∞−
==

σ

σ

σ

σ

τ

π
τ 2D

1-L

),( τth),( 21 ssH and are called the bi-frequency transfer function and 
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Special Case: LTI System
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Representation of “Time” in System Theory

• The “time variable” is assumed to be a 
real variable for physical systems.   This 
assumption facilitates analysis and 
synthesis of fixed (time-invariant) systems 
by allowing the Laplace transform
techniques to be used.

• However, the assumption of “real time” is 
shown to be inadequate for realization of 
time-varying systems in the transform 
domain.
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A New Perspective

• The discussion in this presentation is based on a 
different point of view.  

• Possibility of system realization through an 
examination of the behavior of systems that are 
functions of a complex time-variable.

• This approach allows, in effect, a two-dimensional  
transform techniques to be used for the time-varying 
systems in the same manner that the conventional 
frequency-domain techniques are used in 
connection with fixed systems.
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Conclusion
• We have presented the extension of the Fourier and 

Laplace transform techniques, which is designated 
bivariate operational calculus.

• The two-dimensional transform techniques provide a 
useful framework for some applications.

• The discrete-time version of two-dimensional Laplace 
transform (2DLT) has already been used in digital signal 
processing.

• The relationship between the 2DLT and time-frequency 
transform suggest that it can be a useful tool for analysis 
and synthesis of  linear time-varying systems.

• The work presented here opens several areas for further 
investigations.
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