Modeling Parallel Amplifiers in a System Chain Analysis

Howard Hausman

President /CEO MITEQ, Inc. Hauppauge, NY 11788 October 3, 2013 hhausman@miteq.com

Topics

- Introduction
- Analyzing a Systems Dynamic Range
- Factors in Determining Dynamic
 - Noise Characteristics
 - Noise Figure
 - Harmonics and Intermodulation Interference
- Microwave Dividers & Combiners
- Parallel Amplifiers Combining Losses
- Noise Figure of Parallel Amplifiers
- Output Power & Intermodulation Distortion Improvement
- Conclusion

Introduction

Parallel Amplifier Technology

- System designs often that require output powers above the capability of single devices
- Can be realized by paralleling multiple devices
 - Combining in the power amplifier outputs gives theoretically "N" times the power output
 - N is the number devices in parallel –

Advantages & Disadvantages

Advantages of using a Parallel Amplifier Topology

- **Improving Dynamic Range (Output Power)**
- Alternate configurations provide for
 - Input & Output Matching .
 - Reflected power directed into a load
 - Prevents device destruction
 - Harmonic Rejection

Disadvantages of using a Parallel Amplifier Topology

- Cost
- Complexity

4

Objective

- Simulation programs seem to have a problem handling parallel amplifier topologies (NF & IP3)
- Discuss alternate methods of modeling this topology
- Find a model that can be successfully inserted into a systems dynamic range analysis -

Analyzing a Systems Dynamic Range

- Consider the effect of all the element characteristics on the complete system performance
- Example of system dynamic range requirements:
- Specification of 3rd Order Intermodulation Distortion (IM3)
 - -30 dBc (IM3) for two carriers each at an out of +37dBm
 - → Output 3rd Order intermodulation Intercept Point (OIP3) ≥+52dBm
- Noise Figure (NF): 10 dB maximum
- Each system component adds to the Intermodulation Distortion & NF
 - System design requires a chain analysis

Determine each elements contribution to Distortion & NF -10/3/2013 Howard Hausman

Chain Analysi	S	; In	Amp) Mixer	BP Filter] Am	Out	
Device Characteristics	Space			Local Oscillat	or 25	10	52		-30
Characteristics	Spec			51	30	10	JZ		-30
) 1		Total IN-3rd	37.0 Carrier	35.5 CUM	8.6 CUM	52.5 OIP3	17.04 IIP3	-31.1 Intermod
DESCRIPTION	GAIN F	FIGURE	dBm OUT	Power dBm	GAIN dB	NF dB	3rd dBm	3rd dBm	2 Carriers dBc
INPUT LEVEL			100	15	0.0	0.00	100.0	100.0	-197.0
	0	0	100	1.5	0.0	0.00	97.0	97.0	-191.0
Amplifier	10	6.5	40	11.5	10.0	6.50	40.0	30.0	-57.0
Mixer	-9	9	23	2.5	1.0	7.13	22.4	21.4	-39.7
Filter	-0.5	0.5	100	2.0	0.5	7.21	21.9	21.4	-39.7
Amplifier	15	5	40	17.0	15.5	8.56	35.1	19.6	-36.3
Power Amplifier	20	5	56	37.0	35.5	8.60	52.5	17.0	-31.1
	2/2013			Howard	Hausmar				7

Howard Hausman

10/3/2013

Factors in Determining Dynamic Range

- Dynamic range is defined by system requirements
 Minimum Signal
- Smallest Carrier (signal) level with respect to noise & interference (C/(N+I) that can be successfully recovered
- Limited by noise + interference

Maximum Signal – CW & Multiple Carrier Interference

Maximum Signal for a Modulated Single Carrier Spectral Regrowth – A Single Carrier Issue

- Modulated signal passing through a non-linear device (power amplifier)
- Green is the initial modulated signal
 - Sidebands are filtered and suppressed in the modulator
- In band modulation components mix & create in band and out of band spurious
- In band interference distorts the signal
- Out of band appears like side bands regrown (Blue Response
 - interferes with adjacent channels -

10/3/2013

Adjacent

Channel

Interference

Noise Characteristics

- Noise is a Stationary Gaussian process characterized by its power spectrum
 - Thermal noise constant amplitude over all frequencies
 - Flicker noise (1/f) amplitude inversely proportional to frequency

Thermal Noise

- Thermal Noise is the random motion of electrons
- Noise level is unknown at any instant of time
- Precisely known over any long time period
 - Time >> 1/BW

Thermal Noise Level

- Noise Power = KTB (Watts), Where,
- k= (-228.6 dB/ºK/Hz) [Boltzman's Constant]
- T= Equivalent Noise Temperature (°K)
- B = Noise Bandwidth of a receiver
- At Room temperature 25°C → 298°K
- kTB = 4.11 x 10–18 milliWatts in a 1 Hertz Bandwidth → -173.859dBm/Hz (≈ -174dBm/Hz)

→ -203.859dBW/Hz (≈ -204dBW/Hz)

10/3/2013

Noise and Error Probability (1 $\sigma \leftarrow \rightarrow$ RMS)

10/3/2013

Integrating the **Probability Distribution Function**

- P_i = Area under the pdf curve from $-\infty$ to a_1
- Probability of being between a1 & a2 is P(a2) - P(a1)
- V = 0 (Mean), probability = .5
- P(V<-1σ)=.159</p>
- P(V<+1σ)=.841</p>
- $P(V,>1\sigma)=1-.841=.159^{10^{-4}}$ $P(-1\sigma < V < +1\sigma) = .682$

10/3/2013

0.5 0.4 0.3 0.2 0.1

dV

Howard Hausman

Probability, Standard Deviation & RMS Noise

- $P(>|1\sigma|) = .318$
- P(>|2σ|) = .046
- $P(>|3\sigma|) = 2.7 \times 10^{-3}$
- $P(>|4\sigma|) = 6.3 \times 10^{-5}$
- $P(>|5\sigma|) = 5.7 \times 10^{-7}$
- Setting a noise threshold > |5σ| from the mean has a statistical error rate of 0.57 errors per million bits of information

$$\mathbf{p}_{\mathbf{i}} \coloneqq \frac{1}{\sqrt{2 \cdot \pi \cdot \sigma^2}} \cdot \int_{-\infty}^{a_{\mathbf{i}}} \frac{-(\mathbf{V} - \mu)^2}{2 \cdot \sigma^2} d\mathbf{V}$$

Noise Figure

- Noise figure is defined as a degradation in Signal to Noise Ratio (S/N)
- S/N degrades in every component (constant temperature and bandwidth)
 - F is the Noise Factor (Linear units)
- $F = \frac{S_i/N_i}{S_o/N_o} \ge 1,$
- Noise Figure = NF = 10 Log(F) in dB

Effective Input Noise Level (Ni) = kTBF

- kTB = -114dBm in a 1MHz BW
- NF = 10 dB
- B = 1MHz

10/3/2013

Ni = KTB + NF = -114 dBm + 10 dB = -104 dBm in a 1 MHz Bandwidth -

Noise Figure of Two Cascaded Amplifiers

- Noise from each stage adds non-coherently
- Reflect total noise to input
- Compare to Thermal N2 Noise 🗲 (F) Noise Factor

Input Noise NO = kTB

Input Noise + NF $N1 = kTB^{*}(F1 - 1)$

Effective Noise figure Ftot $F_{eff} = N4/(kTB*G1)$ $F_{eff} = F1 + (F2 - 1)/G1$ $NF_{eff} = 10Log(F_{eff}) -$ 1st Stage Out

Total Noise

$$\frac{1}{N2 = kTB*F1*G1}$$

- N1

G1

N3

N4

N4=kTB*F1*G1+ kTB* (F2-1)

10/3/2013

Howard Hausman

Noise Figure of Cascaded Components

System of M components

$$\overset{\text{Nin}}{\longrightarrow} G1,F1 \longrightarrow G2,F2 \longrightarrow GM,FM \xrightarrow{I}{\longrightarrow} O$$

□ Total Noise is the sum of the noise from each stage

$$N_{\text{out}} = k T_o B_n \left\{ \prod_{m=1}^M G_m + (F_1 - 1) G_1 \prod_{m=2}^M G_m + \dots + (F_M - 1) G_M \right\}$$

Dividing No by the total gain G1G2..Gm results in the input & a effective system noise factor Fo

10/3/2013

$$F_{o} = F_{1} + \frac{F_{2} - 1}{G_{1}} + \frac{F_{3} - 1}{G_{1}G_{2}} + \dots + \frac{F_{M} - 1}{G_{1}G_{2} \cdots G_{M-1}}$$

Ft := F_{1} + $\sum_{i=2}^{N} \left[\frac{|F_{i} - 1|}{\prod_{m=1}^{i-1} |g_{m}|} \right]$

Noise Figure of a Passive Element

- Passive elements like an attenuator are purely resistive
- The output noise equals the input noise (kTB)
- Signal out is attenuated by the amount of loss
- NF= $[S_0/N_0] / [S_{in}/N_{in}] = S_0 / S_{in} = Loss(dB)$

$$\begin{array}{c|c} S_{in} & Atten & S_{o} \\ \hline 6 & dB & \end{array} & NF = 6 & dB \end{array}$$

Harmonics and Intermodulation Interference

- Caused by Device Non-Linearity
- Everything is Non-Linear
- Linearity is an approximation of the Real World
- Active Devices are exhibit a higher degree of non-linearity than passive devices -

Non-Linear Devices

 Non-Linearity devices can be characterized by a Taylor series

 $S_0 = a_0 + a_1 S_i + a_2 S_i^2 + a_3 S_i^3 + a_4 S_i^4 + \dots$

- Linear region is usually from small signal to the point where the small signal gain compresses 1 dB
- @ 1dB Compression
 2nd Harmonic -20 to –
 26 dBc
- Saturation of most Solid State amplifiers occurs within 2dB of the 1 dB Compression Point

10/3/2013

Howard Hausman

Intermodulation Products

Caused by Multiple signals in a non-linear device (Taylor Series)

Results are the sum and difference frequency components of the fundamental and all of their harmonics
 Well behaved Non-linear devices have the highest intermodulation levels at the 2nd and 3rd order terms of the a Taylor series

- $S_0 = a_0 + a_1 S_1 + a_2 S_1^2 + a_3 S_1^3 + a_4 S_1^4 + \dots$ $S_0 = Output Signal$ $S_1 = Input Signal$ $a_n = Coefficients of the device (n = 0,1,2,3,4,\dots)$
- S_i, is two (2) signals: S_i = E1*cos(ω₁t) + E1*cos(ω₂t)
 E1 is the peak amplitudes (equal) and ω₁ & ω₂ are the radian frequencies. -

() MITEQ

10/3/2013

2nd & 3rd Order Intermodulation

- Input frequencies F1 & F2
- 2nd order products occur at F1+F2 and |F1-F2|
 - Concern for BW greater than an octave
- 3rd Order are the 2nd harmonic of one signal mixing with the fundamental of a second signal
 - 2*F1-F2 or 2*F2-F1
- 3rd order intermodulation is ∆F=F2-F1 away from the carrier -

Intercept Point (IP) Determines Interference Level

- IP is an imaginary point where Slopes of the fundamental () & 2nd order IMD () or 3rd order IMD () meet.
- Used to calculate the level of multiple signal interference

Third-order Intermodulation Interference

3rd Order Equal Signal Intermodulation Diagram

10/3/2013

IM_{dBc} = -2(IP3-C)

- Intercept Point (IP3) in dBm
- Carrier Level (C) in dBm
- Intercept Point (IP3) = +20 dBm
- Each Carrier C=+3 dBm
- 3^{rd} Order intermodulation interference $(IM_{dBc}) = -2(IP3-C)$ = -34 dBc = IM_{dBc}

- C_{in} = Carrier Level in & C_{out} = Carrier Level out
- Each component generates intermodulation products
- In general they are in phase and add coherently
- An equivalent system intercept point can be determined
- Intermodulation Interference always gets worse

Microwave Dividers & Combiners

Howard Hausman

Quadrature Dividers & Combiners

0°

00

0°

180°

Load

Signal

Cancels

in Load

29

0°

Quad Hybrid

Divider

-90° -90°

- Input signal: 0° / -90°
- Signal add in (0°) port
- Improved VSWR
 - Reflected signals ports are directed to the load

Wilkenson Dividers & Combiners

- Input & out signals are in phase
- Reflected signal go into the load & return to the input
- Excellent wide band performance

10/3/2013

Coupler Described by a Matrix

S-Parameter Matrix describing a four port device

$$\mathbf{F} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} \\ S_{21} & S_{22} & S_{23} & S_{24} \\ S_{31} & S_{32} & S_{33} & S_{34} \end{bmatrix}$$

Ex: S21, Output at Port 2 with respect to an input at port 1

Matrix for Quadrature Coupler

 S_{41} S_{42} S_{43} S_{44}

 $\mathbf{S} =$

Ideal

- Each path is identical
- Coherent signals are combined (result of 2 signals add (+3dB))
 Net loss: 0dB
- Total Gain = Single Amplifier Gain = 11.6dB

	GAIN	GAIN
DESCRIPTION	dB	dB
Input Gain	-3.	-3.0
Single Amplifier	11.	6.8
Output Gain	+3.	0 11.6

(Coupler does not have gain)

10/3/2013

A portion of the signal goes to the "Load"

Total Loss

Power Difference (dB)

10/3/2013

Howard Hausman

10/3/2013

Howard Hausman

36

Modeling Mismatch Losses

- Path has a Gain & Phase Mismatch
- A portion of the signal is directed to the load
- > 20 degrees & 0.75dB → 0.5dB loss

10/3/2013

Chain Analysis	Modelii	ng
(Dividing & combine	ning can	cels out)
	GAIN	GAIN
DESCRIPTION	dB	dB
INPUT LEVEL		0.0
		0.0
Input Insertion		-0.4
Loss	-0.4	4
Single Ended		11.2
Amplifier	11.0	6
Output Insertion		10.6
Loss	-0.	6
Mismatch Loss	-0.	5 10.1

Mismatch Loss only shows Up in the output

Noise Figure of Parallel Amplifiers

- Signal attenuated 3dB at input NF of each amp is degraded 3 dB
 - Ideally: noise figure of combined amplifier is the same as each individual amplifier

10/3/2013

- Amplifier output noise
 - 1/2 noise goes into the output
 - 1/2 noise goes into the load
- Noise at "Out" = noise of a single amplifier
- Signal adds coherently
 - Output signal: increases 3 dB
 - 3 dB Noise Figure hit at input is recovered

Howard Hausman

Effect of Insertion loss on Noise Figure

Input Circuit

Insertion loss:
 Not made up by the combining device
 Adds to NF (0.4dB in our example)

Output Circuit

- Insertion loss (0.6dB)
 No effect on NF
 - Lowers the gain -

Modeling Mismatch Loss on Noise Figure

Input Circuit Mismatch Loss

- No effect on Noise
- Phase & Gain offsets are realized as an issue on the output

Output Circuit Loss: Effected by channel mismatch:

- Mismatch has little effect on Noise
 - Each leg is uncorrelated (-3dB)
- Mismatch causes signal combining loss
- ≻ S/N goes down → NF goes up
- Effect is noticed at the output
- Mismatch loss has to be applied to the input with respect to NF
 - One for one increase in NF for signal loss at the output

Howard Hausman

Calculate Effect of Insertion loss & Mismatch Loss on Noise Figure

Input Insertion
 Loss
 Same as a

passive loss at input

Mismatch Loss
 (from graph)
 Input: Effects

NF (not gain) at the input

Output: Effects gain not NF -

10/3/2013

Howard Hausman

Output Power & Intermodulation Distortion Improvement

Intermodulation Distortion produced in a single amplifier

- IM1: Intermodulation distortion (dBc)
- C1: Single carrier output level
- OIP3: Intermodulation intercept point at the output of each amplifier (dBm) -

Out IM of Amp 1 IM1=-2(OIP3-C1)

 $IM1_{DIS} = 2(OIP3 - C_1)$

Intermodulation Improvement in Parallel Amplifiers

Ideal

- Combined output power increases 3 dB (C2-C1)
- Intermodulation interference
 - Distortion combines as signal (+3dB)
 - > Relative intermodulation distortion remains the same $(IM1_{DIS} = X dBc)$

$$IM1_{DIS} = 2(OIP3 - C_1)$$

$$Out IM of Amp 1 Out IM of Amp 2 IM1_{DIS} = -2(OIP3 - C1) IM2_{DIS} = -2(OIP3 - C2)$$

$$M1_{DIS} = -2(OIP3 - C1) IM2_{DIS} = -2(OIP3 - C2)$$

$$M1_{DIS} = X dBc is the same at C1 or C2$$

$$C2 is 3dB greater than C1$$

$$C2 is 3dB greater than C1$$

$$OIP3 @ C2 is 3dB higher than OIP3 @ C1 - Howard Hausman$$

C1

IM1

Model for Parallel Combined Amplifiers

		NOISE	IN-3rd
	GAIN	FIGURE	dBm
DESCRIPTION	dB	dB	OUT
	0	0	100
Input Insertion Loss	-0.4	0.4	100
Mismatch Loss	0	0.5	100
Single Ended Amplif	ier 11.6	5	22+3
Output Insertion Lo	ss -0.6	0.6	100
Mismatch Loss	-0.5	0	100
Single Add 3	Amp: IF dB: Para	3=+22 allel Cor	dBm mbining
	DESCRIPTION Input Insertion Loss Mismatch Loss Output Insertion Los Mismatch Loss Single Ended Amplif Output Insertion Los Single	DESCRIPTIONGAIN dBDESCRIPTION0Input Insertion Loss0Mismatch Loss0Single Ended Amplifier0Output Insertion Loss-0.6Mismatch Loss-0.6Mismatch Loss-0.5Single Amplifier-0.5Single Amplifier-0.5	NOISEANOISEDESCRIPTION0001nput Insertion Loss00<

Proposed Chain Analysis Model for Parallel Combined Amplifiers

		dB	Total		10.1	5.9	23.9	13.8
		NOISE	IN-3rd		CUM	CUM	OIP3	IIP3
	GAIN	FIGURE	dBm		GAIN	NF	3rd	3rd
DESCRIPTION	dB	dB	OUT		dB	dB	dBm	dBm
	0	0	100		0.0	0.00	97.0	97.0
Input Insertion Loss	-0.4	0.4	100		-0.4	0.40	95.0	95.4
Mismatch Loss		0.5	100		-0.4	0.90	93.8	94.2
Single Ended Amplifier	11.6	5	25	1	11.2	5.90	25.0	13.8
Output Insertion Loss	-0.6	0.6	100		10.6	5.90	24.4	13.8
Mismatch Loss	-0.5		100		10.1	5.90	23.9	13.8
Single Amp IP3=+22dBm Gain & IP3								
10/3/2013 + 3dB Howard Hausman								

Practical Intermodulation Improvement

Actual IP3 Improvement

Pout is degraded by:

- Output combiner insertion loss
- Mismatch loss

OIP3 is single amplifier Intermodulation Intercept Point

Intermodulation 3rd Order Intercept Point: OIP3_{OUT} (@P_{OUT})
 OIP3_{OUT} = OIP3 + 3dB - Insertion loss - mismatch loss
 If output losses get too high this topology maybe impractical to implement -

Summary

- Key parameters are PHASE & GAIN tracking of parallel paths
 - Couplers and amplifiers may have to be selected for their Gain & Phase tracking
 - Gain & Phase tracking are pertinent over;
 - Frequency
 - Temperature
- Good VSWR is important

10/3/2013

- VSWR is a gain & phase uncertainty factor not independently measurable
- <u>Combiner Insertion loss is critical to the projects success</u>
 - Survey the available combiner techniques to optimize the design
- 1 dB of loss (mismatch + combiner loss) is 20% less power
 - Input DC power is unaffected
 - Efficiency can significantly degrade -

Conclusion

- Many times a computer analysis doesn't readily handle parallel active circuits
- Always do a chain analysis
 - Analyze Subassemblies
 - Analyze Systems

10/3/2013

- The analysis reveals design weaknesses
- Look at NF & IP3 reflected to the input
 - Design weaknesses show up independent of gain
- Don't model a passive circuit with gain
 - Coherent combining looks like it has gain, it's not

 The more homework you do upfront the less heartache you have at the end -

())MITEQ