
Computer Systems Research at
UNT

1

Billion Transistor Chips
Multicore Low Power Architectures

Krishna Kavi
Department of Computer Science and Engineering

The University of North Texas
kavi@cse.unt.edu

http://csrl.csci.unt.edu/~kavi

Computer Systems Research at
UNT

2

More CPU’s per chip -- Multi-core systems

More threads per core -- hyper-threading

More cache and cache levels (L1, L2, L3)

System on a chip and Network on chip

Hybrid system including reconfigurable logic

But, embedded system require careful management
of energy

Billion Transistor Chips
How to garner the silicon real-estate for improved performance?

Computer Systems Research at
UNT

3

We propose innovative architecture that “scales” in

performance as needed, but disables hardware elements when

not needed.

We address several processor elements for performance and

energy savings

Multithreaded CPUs
Cache Memories
Redundant function elimination
Offload administrative functions

Billion Transistor Chips
How to garner the silicon real-estate for improved performance?

Computer Systems Research at
UNT

4

A new multithreaded architecture called Scheduled Dataflow(SDF)
Uses Non-Blocking Multithreaded Model
Decouples Memory access from execution pipelines
Uses in-order execution model (less hardware complexity)

The simpler hardware of SDF may lend itself better for embedded
applications with stringent power requirements

Computer Architecture Research

Computer Systems Research at
UNT

5

Intelligent Memory Devices (IRAM)

Delegate all memory management functions to a separate
processing unit embedded inside DRAM chips

More efficient hardware implementations of memory
management are possible

Less cache conflicts between application processing and
memory management

More innovations are possible

Computer Architecture Research

Computer Systems Research at
UNT

6

Array and Scalar Cache memories

Most processing systems have a data cache and
instruction cache. WHY?

Can we split data cache into a cache for scalar data and one for
arrays?

We show significant performance gains
with 4K scalar cache and 1k array cache we
get the same performance as a 16K cache

Computer Architecture Research

Computer Systems Research at
UNT

7

Function Reuse
Consider a simple example of a recursive function like Fib

int fib (int);
int main()
{ printf ("The value is %d .\n ", fib (num))}
int fib (int num)
{ if (num == 1) return 1;

if (num == 2) return 1;
else {return fib (num-1) + fib (num-2);}

For Fib (n), we call Fib(n-1) and Fib(n-2);
For Fib(n-1) we call Fib(n-2) and Fib (n-3)
So we are calling Fib(n-2) twice

Can we somehow eliminate such redundant calls?

Computer Architecture Research

Computer Systems Research at
UNT

8

What we propose is to build a table in hardware and save function
Calls.

Keep the “name”, and the input values and results of
functions

When a function is called, check this table if the same
function is called with the same inputs

If so, skip the function call, and use the result from a
previous call

Computer Architecture Research

Computer Systems Research at
UNT

9

This slide is deliberately left blank

Computer Systems Research at
UNT

10

Based on our past work with Dataflow and Functional Architectures

Non-Blocking Multithreaded Architecture
Contains multiple functional units like superscalar and other

multithreaded systems
Contains multiple register contexts like other multithreaded

systems

Decoupled Access - Execute Architecture
Completely separates memory accesses from execution pipeline

Overview of our multithreaded SDF

Computer Systems Research at
UNT

11

How does a program run on a computer?

• A program is translated into machine (or assembly) language
• The program instructions and data are stored in memory (DRAM)
• The program is then executed by ‘fetching’ one instruction at a

time
• The instruction to be fetched is controlled by a special pointer

called program counter
• If an instruction is a branch or jump, the program counter is

changed to the address of the target of the branch

Background

Computer Systems Research at
UNT

12

+ -

* /

+

X Y A B

(X+Y)*(A+B) (X-Y)/(A+B)

MIPS like instructions

1. LOAD R2, A / load A into R2
2. LOAD R3, B / load B into R3
3. ADD R11, R2, R3 / R11 = A+B
4. LOAD R4, X / load X into R4
5. LOAD R5, Y / load Y into R5
6. ADD R10, R4, R5 / R10 = X+Y
7. SUB R12, R4, R5 / R12 = X-Y
8. MULT R14, R10, R11 / R14 = (X+Y)*(A+B)
9. DIV R15, R12, R11 / R15 = (X-Y)/(A+B)
10. STORE , R14 / store first result
11. STORE , R15 / store second result

Pure Dataflow Instructions

1: LOAD 3L / load A, send to Instruction 3
2: LOAD 3R / load B, send to Instruction 3
3: ADD 8R, 9R / A+B, send to Instructions 8 and 9
4: LOAD 6L, 7L / load X, send to Instructions 6 and 7
5: LOAD 6R, 7R / load Y, send to Instructions 6 and 7
6: ADD 8L / X+Y, send to Instructions 8
7: SUB 9L / X-Y, send to Instruction 9
8: MULT 10L / (X+Y)*(A+B), send to Instruction 10
9: DIV 11L / (X-Y)/(A+B), send to Instruction 11
10: STORE / store first result
11: STORE / store second result

Dataflow Model

Computer Systems Research at
UNT

13

SDF Dataflow Model

We use dataflow model at thread level
Instructions within a thread are executed sequentially

We also call this non-blocking thread model

Computer Systems Research at
UNT

14

Traditional multithreaded systems use blocking models

• A thread is blocked (or preempted)
• A blocked thread is switched out

and execution resumes in future

• In some cases, the resources of a blocked thread
• (including register context) may be assigned to other
• awaiting threads.
• Blocking models require more context switches

In a non-blocking model, once a thread begins execution, it
will not be stopped (or preempted) before it
completes execution

Blocking vs Non-Blocking Thread Models

Computer Systems Research at
UNT

15

Most functional and dataflow systems use non-blocking
threads

A thread/code block is enabled when all its inputs are available.
A scheduled thread will run to completion.

Similar to Cilk Programming model

Note that recent versions of Cilk (Clik-5) permits
thread blocking and preemptions

Non-Blocking Threads

Computer Systems Research at
UNT

16

thread fib (cont int k, int n)
{ if (n<2)

send_argument (k, n)
else{

cont int x, y;
spawn_next sum (k, ?x, ?y); /* create a successor thread
spawn fib (x, n-1); /* fork a child thread
spawn fib (y, n-2); /* fork a child thread

}}
thread sum (cont int k, int x, int y)

{send_argument (k, x+y);} /* return results to parent’s
/*successor

Cilk Programming Example

Computer Systems Research at
UNT

17

c
o
d
e

sum

fib

fib

0

0

2

cont

cont

cont

n-1

n-2

x
y

Join counter

Cilk Programming Example

Computer Systems Research at
UNT

18

Separate Processor to handle all memory accesses
The earliest suggestion by J.E. Smith -- DAE architecture

Address
Registers

Memory

Execute Processor

Access Processor

Operands

Operands

Branch Decision

Branch Decision

Decoupled Architectures
Separate memory accesses from execution

Computer Systems Research at
UNT

19

• Designed for STRETCH system with no pipelines

• Single instruction stream

• Instructions for Execute processor must be coordinated with
the data accesses performed by Access processor

• Very tight synchronization needed

• Coordinating conditional branches complicates the design

• Generation of coordinated instruction streams for Execute
and Access my prevent traditional compiler optimizations

Limitations of DAE Architecture

Computer Systems Research at
UNT

20

We use multithreading along with decoupling ideas

Group all LOAD instructions together at the head of a thread

Pre-load thread’s data into registers before scheduling for execution

During execution the thread does not access memory

Group all STORE instructions together at the tail of the thread

Post-store thread results into memory after thread completes execution

Data may be stored in awaiting Frames

Our non-blocking and fine grained threads facilitates a clean
separation of memory accesses into Pre-load and Post-store

Our Decoupled Architecture

Computer Systems Research at
UNT

21

LD F0, 0(R1) LD F0, 0(R1)
LD F6, -8(R1) LD F6, -8(R1)
MULTD F0, F0, F2 LD F4, 0(R2)
MULTD F6, F6, F2 LD F8, -8(R2)
LD F4, 0(R2) MULTD F0, F0, F2
LD F8, -8(R2) MULTD F6, F6, F2
ADDD F0, F0, F4 SUBI R2, R2, 16
ADDD F6, F6, F8 SUBI R1, R1, 16
SUBI R2, R2, 16 ADDD F0, F0, F4
SUBI R1, R1, 16 ADDD F6, F6, F8
SD 8(R2), F0 SD 8(R2), F0
BNEZ R1, LOOP SD 0(R2), F6
SD 0(R2), F6

Conventional New Architecture

Pre-Load and Post-Store

Computer Systems Research at
UNT

22

• No pipeline bubbles due to cache misses

• Overlapped execution of threads

• Opportunities for better data placement and prefetching

• Fine-grained threads -- A limitation?

• Multiple hardware contexts add to hardware complexity

If 36% of instructions are memory access instructions, PL/PS can achieve 36%
increase in performance with sufficient thread parallelism and completely mask
memory access delays!

Features Of Our Decoupled System

Computer Systems Research at
UNT

23

A Programming Example

+ -

* /

+

X Y A B

(X+Y)*(A+B) (X-Y)/(A+B)

Execute
ADD RR2, R11, R13 / compute A+B, Result in R11 and R13
ADD RR4, R10 / compute X+Y, Result in R10
SUB RR4, R12 / compute X – Y, Result in R12
MULT RR10, R14 / compute (X+Y)*(A+B), Result in R14
DIV RR12, R15 / compute (X-Y)/(A+B), Result in R15

Pre-Load
LOAD RFP| 2, R2 / load A into R2
LOAD RFP| 3, R3 / load B into R3
LOAD RFP| 4, R4 / load X into R4
LOAD RFP| 5, R5 / load Y into R5
LOAD RFP| 6, R6 / frame pointer for returning first result
LOAD RFP| 7, R7 / frame offset for returning first result
LOAD RFP| 8, R8 / frame pointer for returning second result
LOAD RFP| 9, R9 / frame offset for returning second result

Post-Store
STORE R14, R6|R7 / store first result

STORE R15, R8|R9 / store second result

Computer Systems Research at
UNT

24

A Programming Example

preload: LOAD RFP|2, R2 # base of a into R2 body: MULTD RR8, R11 #a[i,k]*b[k,j] in R11
 LOAD RFP|3, R3 # index a[i,k] into R3 ADDD RR10, R10 # c[i,j] + a[i,k]*b[k,j] in

R10
 LOAD RFP|4, R4 # base of b into R4 FORKSP poststore #transfer to SP
 LOAD RFP|5, R5 # index b[k,j] into R5 STOP
 LOAD RFP|6, R6 # base of c into R6
 LOAD RFP|7, R7 # index c[i,j] into R7
 IFETCH RR2, R8 # fetch a[i,k] to R8 poststore: ISTORE RR6, R10 #save c[i,j]
 IFETCH RR4, R9 # fetch b[k,j] to R9 STOP
 IFETCH RR6, R10 # fetch c[i,j] to R10
 FORKEP body # transfer to EP
 STOP

Figure 4: A SDF Code Example

Computer Systems Research at
UNT

25

Execute
EQ RR2, R4 / compare R2 and R3, Result in R4
NOT R4, R5 / Complement of R4 in R5
FALLOC “Then_Thread” / Create Then Thread (Allocate Frame memory, Set Synch-Count,
FALLOC “Else_Thread” / Create Else Thread (Allocate Frame memory, Set Synch-Count,
FORKSP R4, “Then_Store” /If X=Y, get ready post-store “Then_Thread”
FORKSP R5, “Else_Store” /Else, get ready pre-store “Else_Thread”
STOP

Pre-Load
LOAD RFP| 2, R2 / load X into R2
LOAD RFP| 3, R3 / load Y into R3

/ frame pointers for returning results
/ frame offsets for returning results

In Then_Thread, We de-allocate (FFREE) the Else_Thread
and vice-versa

X Y

=

Then_Thread Else_Thread

Conditional Statements in SDF

Computer Systems Research at
UNT

26

SDF Architecture

Instruction
Fetch Unit

Decode
Unit

E xecute
U nit

Write-Back
Unit

PC

Reg . Context Regist er Sets

Instruction
Cache

Pr e-Loaded
Threads

Instruction
Fetch Unit

Decode
Unit

Execute
Unit

Write-Back
Unit

PC

Reg . Context RegisterSets

Instruction
Cache

Enabled
Threads

Effective
AddressUnit

Data Cache

Post-Store
Threads

Memory
AccessUnit

Po s t- S t o r e T h r e ad s

W a itin g T h r e a d s

A v ai la b le
Fr a m e s

S ched u ler

En ab led Th read s

FP Reg . Co n tex t IP

P relo ad ed Th read s

S P P ip elin e
Pri or i ty
C o nt ro l

I PReg . C on tex t

F P IP Sy n ch C o u nt

Execute Processor (EP) Memory Access Pipeline

Synchronization Processor (SP)

Computer Systems Research at
UNT

27

Execution of SDF Programs

Preload

Preload

Poststore

Thread0

Thread 2

Preload

Preload

Execute

Poststore

Execute

Poststore

Thread 3

Thread 4

SP =PL/PS EP=EX

Execute

Preload

Poststore

Execute

Execute

PoststoreThread 1

Computer Systems Research at
UNT

28

Some Performance Results
Scalability of SDF (Matrix)

0
10000000
20000000
30000000
40000000
50000000
60000000

2+1 2+2 3+2 3+3 4+3 4+4 5+4 5+5
Number of Functional Units

E
x
e
c
u
t
i
o
n

C
y
c
l
e
s

In Order Out of Order SDF

Scalability of SDF (FFT)

0
1000000
2000000
3000000
4000000

2+1 2+2 3+2 3+3 4+3 4+4 5+4 5+5
Number of Functional Units

E
x
e
c
u
t
i
o
n

C
y
c
l
e
s

In Order Out of Order SDF

Scalability of SDF (Zoom)

0

2000000

4000000

6000000

2+1 2+2 3+2 3+3 4+3 4+4 5+4 5+5 6+5 6+6
Number of Functional Units

E
x
e
c
u
t
i
o
n

C
y
c
l
e
s

In Order Out of Order SDF

Computer Systems Research at
UNT

29

Some Performance Results
SDF vs Supersclar and VLIW

 IPC IPC IPC

 VLIW Superscalar SDF

 Benchmark 1 IALU/1 FALU 1 IALU/1 FALU 1 SP, 1 EP

Matrix Mult 0.334 0.825 1.002

Zoom 0.467 0.752 0.878

Jpeg 0.345 0.759 1.032

ADPCM 0.788 0.624 0.964

 Benchmark 2 IALU, 2FALU 2 IALU, 2FALU 2 SP, 2 EP

Matrix Mult 0.3372 0.8253 1.8244

Zoom 0.4673 0.7521 1.4717

Jpeg 0.3445 0.7593 1.515

ADPCM 0.7885 0.6245 1.1643

 Benchmark 4 IALU, 4FALU 4IALU, 4FALU 4 SP, 4EP

Matrix Mult 0.3372 0.826 2.763

Zoom 0.4773 0.8459 2.0003

Jpeg 0.3544 0.7595 1.4499

ADPCM 0.7885 0.6335 1.1935

Computer Systems Research at
UNT

30

Some Performance Results
SDF vs SMT

 IPC IPC

 SMT SDF

 Benchmark 2 threads 2 threads

Matrix Mult 1.9885 1.8586

Zoom 1.8067 1.7689

Jpeg 1.9803 2.1063

ADPCM 1.316 1.9792

 Benchmark 4 threads 4 threads

Matrix Mult 3.6153 3.6711

Zoom 2.513 2.9585

Jpeg 3.6219 3.8641

ADPCM 1.982 2.5065

Benchmark 6 threads

Matrix Mult 5.1445

Zoom 4.223

Jpeg 4.7495

ADPCM 3.7397

Computer Systems Research at
UNT

31

Some Scalability Data

Computer Systems Research at
UNT

32

Architecture Model

Speculative Thread Execution

Computer Systems Research at
UNT

33

We extend MESI cache coherency protocol
Our states are:

011SpR.Sh

111SpR.Ex

010S

110E/M

X0XI

Dirty(Exclusive)ValidSpRead

Speculative Thread Execution

Computer Systems Research at
UNT

34

Speculative Thread Execution

Transition Diagram (processor)

Computer Systems Research at
UNT

35

Speculative Thread Execution

Transition Diagram (bus)

Computer Systems Research at
UNT

36

Speculative Thread Execution

Node structure

Computer Systems Research at
UNT

37

Speculative Thread Execution

Synthetic Benchmark Result

c. SP:EP 50%:50%

b. SP-EP 66%:33%a. SP:EP 33%:66%

 0

 2

 4

 6

 8

 10

 12

 100 90 80 70 60 50 40 30 20 10 0

Sp
ee

du
p

Success Rate (%)

8SP8EP
6SP6EP
4SP4EP
2SP2EP

 0

 2

 4

 6

 8

 10

 12

 100 90 80 70 60 50 40 30 20 10 0

Sp
ee

du
p

Success Rate (%)

8SP8EP
6SP6EP
4SP4EP
2SP2EP

 0

 2

 4

 6

 8

 10

 12

 14

 16

 100 90 80 70 60 50 40 30 20 10 0

Sp
ee

du
p

Success Rate (%)

8SP8EP
6SP6EP
4SP4EP
2SP2EP

Computer Systems Research at
UNT

38

Speculative Thread Execution

Real Benchmarks

Computer Systems Research at
UNT

39

This slide is deliberately left blank

Computer Systems Research at
UNT

40

Two types of localities exhibited by programs
Temporal: an item accessed now may be accessed

in the near future
Spatial: If an item is accessed now, nearby items are

likely to be accessed in the near future

Instructions and Array data exhibit spatial

Scalar data items (such as loop index variable) exhibit temporal

So, we should try to design different types of caches for
arrays and scalar data

Array and Scalar Caches

Computer Systems Research at
UNT

41

Array and Scalar Caches

Comparing Split and Unified Cache

0

0.05

0.1

0.15

0.2

0.25

0.3

art equake ammp mesa applu sixtr

unified 16k cach

separated 4k
scalar and 2k
array caches

Unified Cache
Direct mapped
Block size: 32 bytes
Split Cache
scalar cache: 2-way set associative

32 bytes blocks
array cache: Direct mapped

128 byte blocks

Computer Systems Research at
UNT

42

Array and Scalar Caches

Summary of Results with array and scalar caches
using SPEC 2000 Benchmarks

43% reduction in Miss rate for benchmark art and mesa
24% reduction in Miss rate for benchmark equake

12% reduction in Miss rate for benchmark ammp

Computer Systems Research at
UNT

43

Array and Scalar Caches

Augmenting scalar cache with victim cache and array cache with
prefetch buffers

What is a Victim Cache?

A small fully associative cache to augment L1
direct mapped cache

On a cache miss, the displaced cache entry is moved to
victim cache

Minimizes the number of conflict misses

Computer Systems Research at
UNT

44

Array and Scalar Caches

Results

0

0.05

0.1

0.15

0.2

0.25

0.3

art equake ammp mesa mgrid applu fma3d sixtrack

Ef
fe

ct
iv

e
m

iss
 ra

te

16 k unified
cache
Integrated
approach

Conventional cache configuration: 16k, 32 bytes block, Direct mapped
Scalar cache configuration: 4k, 64 bytes block, Direct mapped

with 8 lined Victim cache
Array cache configuration: 4k, 64 bytes block, Direct mapped with multiple (4)

10 lined stream buffers

Computer Systems Research at
UNT

45

Array and Scalar Caches

Embedded applications

Tighter constraints on both functionality and implementation.

Must meet strict timing constraints

Must be designed to function within limited resources such as

memory size, available power, and allowable weight

Split caches can address these challenges

Computer Systems Research at
UNT

46

Array and Scalar Caches

Reconfigurability

• The performance of a given cache architecture is largely

determined by the behavior of the applications

• Manufacturer typically sets the cache architecture as a

compromise across several applications

• This leads to conflicts in deciding on total cache size, line size

and associativity

• For embedded systems where everything needs to be cost

effective, this “one-size-fits-all” design philosophy is not

adequate

Computer Systems Research at
UNT

47

Array and Scalar Caches

Reconfigurability

• Our goal is to design caches that achieve high performance
for embedded applications while remaining both energy
and area efficient

• We apply reconfigurability to the design of caches to
address these conflicting requirements

• Emphasize only on cache size
• We did not implement reconfigurability for associativity as

cache splitting and victim caching solves that problem

Computer Systems Research at
UNT

48

Array and Scalar Caches

Benchmarks

Benchmark Description % of
load/s

tor

Name
in fig

bit counts Test bit manipulation 11 bc
qsort Computational Chemistry 52 qs

dijkstra Shortest path problem 34.8 dj
blowfish Encription/decription 29 bf

sha Secure Hash Algorithm 19 sh
rijndael Encryption Standard 34 ri

string search Search mechanism 25 ss
adpcm Variation of PCM standard 7 ad
CRC32 Redundency check 36 cr

FFT Fast Fourier Transform 23 ff

Computer Systems Research at
UNT

49

Array and Scalar Caches

Percentage reduction of power, area and cycle for
instruction cache

(a)

0

50

100

bc qs dj bf sh ri ss ad cr ff avg

power
area
time

Conventional cache configuration: 8k, Direct mapped instruction cache,
32k 4-way Unified level 2 cache

Our Instruction cache configuration: Size variable, Direct mapped
with variable sized prefetch buffer

Computer Systems Research at
UNT

50

Array and Scalar Caches

Percentage reduction of power, area and cycle for
data cache

(b)

0

50

100

bc qs dj bf sh ri ss ad cr ff avg

power
area
time

Conventional cache configuration: 8k, Direct mapped data cache,
32k 4-way Unified level 2 cache

Scalar cache configuration: Size variable, Direct mapped
with 2 lined Victim cache

Array cache configuration: Size variable, Direct mapped

Computer Systems Research at
UNT

51

Array and Scalar Caches

Cache configurations yielding lowest power, area and cache
access time

Benchmark Instruction cache Prefetch buffer Array cache Scalar cache
bit counts 256 bytes 256 bytes 512 bytes 512 bytes

qsort 256 bytes 512 bytes 1k 4k
dijkstra 1k 2k 512 bytes 4k
blowfish 1k 1k 512 bytes 4k

sha 256 bytes 512 bytes 512 bytes 1k
rijndael 512 bytes 512 bytes 1k 4k

string search 256 bytes No prefetching 512 bytes 1k
adpcm 256 bytes 256 bytes 1k 512 bytes
CRC32 256 bytes 256 bytes 512 bytes 512 bytes

FFT 1k 1k 1k 4k

Computer Systems Research at
UNT

52

Array and Scalar Caches

Summarizing
For instruction cache
85% (average 62%) reduction in cache size
72% (average 37%) reduction in cache access time
75% (average 47%) reduction in energy consumption

For data cache
78% (average 49%) reduction in cache size
36% (average 21%) reduction in cache access time
67% (average 52%) reduction in energy consumption

when compared with an 8KB L-1 instruction cache and an 8KB L-1
unified data cache with a 32KB level-2 cache

Computer Systems Research at
UNT

53

This slide is deliberately left blank

Computer Systems Research at
UNT

54

If there are no “side-effects” then a function with the same

Inputs, will generate the same output.

Compiler can help in making sure that if a function has

Side-effects or not

At runtime, when we decode “JAL” instruction we know

that we are calling a function

At that time, look up a table to see if the function is

called before with the same arguments

Function Reuse
Eliminate redundant function execution

Computer Systems Research at
UNT

55

Function Reuse

Computer Systems Research at
UNT

56

0%
20%
40%
60%
80%

100%

Fibbonnacci

D
ijkstra

R
aw

caudio

B
it count

Q
uick Sort

Parser

G
cc

Perl

Ijpeg

Vortex

M
88ksim

G
o

Percentage

Here we show what percentage of functions are “redundant”
and can be be “reused”

Function Reuse

Computer Systems Research at
UNT

57

 Benchmark Speedup
Fib 3.23

Dijkstra 1.83
Rawcaudio 1.81
Bit Count 1.81
Quick Sort 1.67

Parser 1.71
Gcc 1.40
Perl 1.22
Ijpeg 1.27

Vortex 1.42
M88ksim 1.38

Go 1.37

Function Reuse

Computer Systems Research at
UNT

58

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

Fibbonnacci

Dijkstra

Raw caudio

Bit count

Quick Sort

Parser

Gcc

Perl

Ijpeg

Vortex

M88ksim

Go

B
enchm

ark

Speedup

1024 Entries

512 Entries

256 Entries

128 Entries

Function Reuse

Computer Systems Research at
UNT

59

Visit our website
http://csrl.csci.unt.edu/

You will find our papers and tools

For More Information

Computer Systems Research at
UNT

60

This slide is deliberately left blank

Computer Systems Research at
UNT

61

For object-oriented programming systems, memory management is

complex and can consume as much as 40% of total execution

time

Also, if CPU is performing memory management, CPU cache will

perform poorly due to switching between user functions

and memory management functions

If we have a separate hardware and separate cache for memory

management, CPU cache performance can be improved dramatically

Offloading Memory Management Functions

Computer Systems Research at
UNT

62

Separate Caches With/Without Processor

B
IUCPU

Data
Cache

1

2

3

De-All Completion

Allocation Ready

S
ystem

 B
us

Instruction
Cache

Interface

M
em

or
y

Pr
oc

es
so

r

MP
Inst. Cache

MP
Data Cache

S
ec

on
d

Le
ve

l C
ac

he

Computer Systems Research at
UNT

63

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

abt lea abt lea abt lea abt lea abt lea total

boxed cfrac espresso ptc average

Separate
Con-Conf

Cache Miss Rates – 8 Kbyte Cache with 32 Bytes cache line size

Empirical Results

Computer Systems Research at
UNT

64

Execution Performance Improvements

12.7610.036071222846205606442.08bisort

39.9919.0336467959936531.17Cfrac

espresso

18.83.191616890742207086140317.37197.parser

0.03460.0314,539,7654,540,6600.04164.gzip

2.902.8112983022203130204622400.59255.vortex

% Performance
increase due to
fastest separate

Hardware
Implementation

% Performance
increase due to

Separate
Hardware

Implementation

Numbers of
instruction in

Separated
Hardware

Implementation

Numbers of
instructions in
conventional
Architecture

% of
cycles

spent on
malloc

Name
of

Benchmark

Computer Systems Research at
UNT

65

 Instruction
Reduction 2T speedup 3T speedup 4T speedup

Cfrac 23.3% 19.3% 25.26% 30.08%
espresso 6.07% 9.09% 8.35% 6.27%
perlbmk 9.05% 14.03% 18.07% 18.35%
parser 16.88% 17.38% 16.93% 18.61%
Ave. 13.83% 14.95% 17.15% 18.33%

All threads executing the same function

Performance in Multithreaded Systems

Computer Systems Research at
UNT

66

Each thread executing a different task

 Ave. #of instruction
Reduction

Ave. Performance
Improvement

2T 11.52% 14.67%
3T 12.41% 20.21%
4T 14.67% 19.60%

Performance in Multithreaded Systems

Computer Systems Research at
UNT

67

Key cycle intensive portions implemented in
hardware

For PHK, the bit map for each page in hardware
page directories in software
needed only 20K gates
produced between 2-11% performance

Hybrid Implementations

	More CPU’s per chip -- Multi-core systemsMore threads per core -- hyper-threadingMore cache and cache levels (L1, L2, L3)Sy
	We propose innovative architecture that “scales” in performance as needed, but disables hardware elements when not needed.We
	Computer Architecture Research
	Computer Architecture Research
	Computer Architecture Research
	Computer Architecture Research
	Computer Architecture Research
	Overview of our multithreaded SDF
	Background
	Dataflow Model
	SDF Dataflow Model
	Blocking vs Non-Blocking Thread Models
	Non-Blocking Threads
	Cilk Programming Example
	Cilk Programming Example
	Decoupled ArchitecturesSeparate memory accesses from execution
	Limitations of DAE Architecture
	Our Decoupled Architecture
	Pre-Load and Post-Store
	A Programming Example
	A Programming Example
	Conditional Statements in SDF
	SDF Architecture
	Speculative Thread Execution
	Comparing Split and Unified Cache
	Summary of Results with array and scalar caches using SPEC 2000 Benchmarks
	Augmenting scalar cache with victim cache and array cache with prefetch buffers
	Results
	Embedded applications
	Reconfigurability
	Reconfigurability
	Benchmarks
	Percentage reduction of power, area and cycle for instruction cache
	Percentage reduction of power, area and cycle for data cache
	Cache configurations yielding lowest power, area and cache access time
	Summarizing

