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More CPU’s per chip -- Multi-core systems

More threads per core -- hyper-threading

More cache and cache levels (L1, L2, L3)

System on a chip and Network on chip

Hybrid system including reconfigurable logic

But, embedded system require careful management
of energy 

Billion Transistor Chips
How to garner the silicon real-estate for improved performance?
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We propose innovative architecture that “scales” in 

performance as needed, but disables hardware elements when 

not needed.

We address several processor elements for performance and 

energy savings

Multithreaded CPUs
Cache Memories
Redundant function elimination
Offload administrative functions

Billion Transistor Chips
How to garner the silicon real-estate for improved performance?
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A new multithreaded architecture called Scheduled Dataflow(SDF)
Uses Non-Blocking Multithreaded Model
Decouples Memory access from execution pipelines 
Uses in-order  execution model (less hardware complexity)

The simpler hardware of SDF may lend itself better for embedded 
applications with stringent power requirements

Computer Architecture Research
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Intelligent Memory Devices (IRAM)

Delegate all memory management functions to a separate
processing unit embedded inside DRAM chips

More efficient hardware implementations of memory
management are possible

Less cache conflicts between application processing and 
memory management

More innovations are possible

Computer Architecture Research
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Array and Scalar Cache memories

Most processing systems have a data cache and
instruction cache.  WHY?

Can we split data cache into a cache for scalar data and one for
arrays?     

We show significant performance gains
with 4K scalar cache and 1k array cache we
get the same performance as a 16K cache

Computer Architecture Research
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Function Reuse
Consider a simple example of a recursive function like Fib

int fib (int);
int main()
{ printf ("The value is %d .\n ", fib (num) )}
int fib (int num)
{ if (num == 1) return 1;

if (num == 2) return 1;
else {return fib (num-1) + fib (num-2);}

For Fib (n), we call Fib(n-1) and Fib(n-2);
For Fib(n-1) we call Fib(n-2) and Fib (n-3)
So we are calling Fib(n-2) twice

Can we somehow eliminate such redundant calls?

Computer Architecture Research
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What we propose is to build a table in hardware and save function
Calls.

Keep the “name”, and the input values and results of
functions

When a function is called, check this table if the same
function is called with the same inputs

If so, skip the function call, and use the result from a
previous call

Computer Architecture Research
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This slide is deliberately left blank
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Based on our past work with Dataflow and Functional Architectures

Non-Blocking Multithreaded Architecture
Contains multiple functional units like superscalar and other 

multithreaded systems
Contains multiple register contexts like other multithreaded  

systems

Decoupled Access - Execute Architecture
Completely separates memory accesses from execution pipeline

Overview of our multithreaded SDF
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How does a program run on a computer?

• A program is translated into machine (or assembly) language
• The program instructions and data are stored in memory (DRAM)
• The program is then executed by ‘fetching’ one instruction at a 

time
• The instruction to be fetched is controlled by a special pointer

called program counter
• If an instruction is a branch or jump, the program counter is 

changed to the address of the target of the branch

Background
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+ -

* /

+

X Y A B

(X+Y)*(A+B) (X-Y)/(A+B)

MIPS like instructions

1. LOAD    R2, A / load A into R2
2. LOAD    R3, B / load B into R3
3. ADD      R11, R2, R3 / R11 = A+B
4. LOAD    R4, X / load X into R4
5. LOAD    R5, Y / load Y into R5
6. ADD      R10, R4, R5        / R10 = X+Y
7. SUB       R12, R4, R5        / R12 = X-Y
8. MULT   R14, R10, R11    / R14 = (X+Y)*(A+B)
9. DIV       R15, R12, R11    / R15 = (X-Y)/(A+B)
10. STORE   ....,  R14 / store first result 
11. STORE  .....,  R15 / store second result

Pure Dataflow Instructions

1:   LOAD    3L / load  A, send to Instruction 3
2:   LOAD    3R / load B, send to Instruction 3
3:   ADD      8R, 9R / A+B, send to Instructions 8 and 9
4:   LOAD    6L, 7L / load X, send to Instructions 6 and 7
5:   LOAD    6R, 7R / load Y, send to Instructions 6 and 7
6:   ADD       8L / X+Y, send to Instructions 8 
7:   SUB      9L / X-Y,  send to Instruction 9
8:   MULT    10L / (X+Y)*(A+B), send to Instruction 10
9:   DIV        11L / (X-Y)/(A+B), send to Instruction 11
10: STORE   / store first result 
11: STORE  / store second result

Dataflow Model
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SDF Dataflow Model

We use dataflow model at thread level 
Instructions within a thread are executed sequentially

We also call this non-blocking thread model
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Traditional multithreaded systems use blocking models

• A thread is blocked (or preempted) 
• A blocked thread is switched out 

and execution resumes in future

• In some cases, the resources of a blocked thread
• (including register context) may be assigned to other 
• awaiting threads.
• Blocking models require more context switches

In a non-blocking model, once a thread begins execution, it
will not be stopped (or preempted) before it 
completes execution

Blocking vs Non-Blocking Thread Models
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Most functional and dataflow systems use non-blocking 
threads

A thread/code block is enabled when  all its inputs are available.
A scheduled thread will run to completion.

Similar to Cilk Programming model

Note that recent versions of Cilk (Clik-5) permits
thread blocking and preemptions

Non-Blocking Threads
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thread fib (cont int k, int n)
{   if (n<2)

send_argument (k, n)
else{    

cont int x, y;
spawn_next sum (k, ?x, ?y);    /* create a successor thread
spawn fib (x, n-1); /* fork a child thread
spawn fib (y, n-2); /* fork a child thread

}}
thread sum (cont int k, int x, int y)

{send_argument (k, x+y);}        /* return results to parent’s 
/*successor

Cilk Programming Example
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Separate Processor to handle all memory accesses
The earliest suggestion by J.E. Smith -- DAE architecture

Address 
Registers

Memory

Execute Processor

Access Processor

Operands

Operands

Branch Decision

Branch Decision

Decoupled Architectures
Separate memory accesses from execution
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• Designed for STRETCH system with no pipelines

• Single instruction stream

• Instructions for Execute processor must be coordinated with 
the data    accesses performed by Access processor

• Very tight synchronization needed

• Coordinating conditional branches complicates the design

• Generation of coordinated instruction streams for Execute 
and Access my prevent traditional compiler optimizations

Limitations of DAE Architecture
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We use multithreading along with decoupling ideas

Group all LOAD instructions together at the head of a thread

Pre-load thread’s data into registers before scheduling for execution

During execution the thread does not access memory

Group all STORE instructions together at the tail of the thread

Post-store thread results into memory after thread completes execution

Data may be stored in awaiting Frames

Our non-blocking and fine grained threads facilitates a clean 
separation of  memory accesses into Pre-load and Post-store

Our Decoupled Architecture
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LD F0, 0(R1) LD F0, 0(R1)
LD F6, -8(R1) LD F6, -8(R1)
MULTD F0, F0, F2 LD F4, 0(R2)
MULTD F6, F6, F2 LD F8, -8(R2)
LD F4, 0(R2) MULTD F0, F0, F2
LD F8, -8(R2) MULTD F6, F6, F2
ADDD F0, F0, F4 SUBI R2, R2, 16
ADDD F6, F6, F8 SUBI R1, R1, 16
SUBI R2, R2, 16 ADDD F0, F0, F4
SUBI R1, R1, 16 ADDD F6, F6, F8
SD 8(R2), F0 SD 8(R2), F0
BNEZ R1, LOOP SD 0(R2), F6
SD 0(R2), F6

Conventional New Architecture

Pre-Load and Post-Store
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• No pipeline bubbles due to cache misses

• Overlapped execution of threads

• Opportunities for better data placement and prefetching

• Fine-grained threads -- A limitation?

• Multiple hardware contexts add to hardware complexity

If 36% of instructions are memory access instructions, PL/PS can achieve 36% 
increase in performance with sufficient thread parallelism and completely mask 
memory access delays!

Features Of Our Decoupled System
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A Programming Example

+ -

* /

+

X Y A B

(X+Y)*(A+B) (X-Y)/(A+B)

Execute
ADD        RR2, R11, R13 / compute A+B,  Result in R11 and R13
ADD        RR4, R10 / compute X+Y,  Result in R10
SUB         RR4,  R12 / compute X – Y, Result in R12
MULT     RR10, R14 / compute (X+Y)*(A+B), Result in R14
DIV          RR12, R15 / compute (X-Y)/(A+B), Result in R15

Pre-Load
LOAD  RFP| 2,    R2 / load A into R2
LOAD  RFP| 3,    R3 / load B into R3
LOAD  RFP| 4,    R4 / load X into R4
LOAD  RFP| 5,    R5 / load Y into R5
LOAD RFP| 6,     R6 / frame pointer for returning first result
LOAD RFP| 7,     R7 / frame offset for returning first result
LOAD RFP| 8,     R8 / frame pointer for returning second result
LOAD RFP| 9,    R9 / frame offset for returning second result

Post-Store
STORE    R14,   R6|R7                    / store first result

STORE    R15,  R8|R9                     / store second result
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A Programming Example

preload: LOAD RFP|2, R2 # base of a into R2 body: MULTD RR8, R11 #a[i,k]*b[k,j] in R11 
 LOAD RFP|3, R3 # index a[i,k] into R3  ADDD RR10, R10 # c[i,j] + a[i,k]*b[k,j] in 

R10 
 LOAD RFP|4, R4 # base of b into R4  FORKSP poststore #transfer to SP 
 LOAD  RFP|5, R5 # index b[k,j] into R5  STOP   
 LOAD RFP|6, R6 # base of c into R6     
 LOAD RFP|7, R7 # index c[i,j] into R7     
 IFETCH RR2, R8 # fetch a[i,k] to R8 poststore: ISTORE RR6, R10 #save c[i,j] 
 IFETCH RR4, R9 # fetch b[k,j] to R9  STOP   
 IFETCH RR6, R10 # fetch c[i,j] to R10     
 FORKEP body # transfer to EP     
 STOP       

Figure 4: A SDF Code Example 
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Execute
EQ RR2, R4 / compare R2 and R3, Result in R4
NOT     R4, R5 / Complement of R4 in R5
FALLOC “Then_Thread” / Create Then Thread (Allocate Frame memory, Set Synch-Count, 
FALLOC “Else_Thread” / Create Else Thread (Allocate Frame memory, Set Synch-Count,
FORKSP R4, “Then_Store” /If X=Y, get ready post-store “Then_Thread”
FORKSP R5, “Else_Store” /Else, get ready pre-store “Else_Thread”
STOP

Pre-Load
LOAD  RFP| 2,    R2 / load X into R2
LOAD  RFP| 3,    R3 / load Y into R3

/ frame pointers for returning  results
/ frame offsets for returning results

In Then_Thread, We de-allocate (FFREE) the Else_Thread
and vice-versa

X Y

=

Then_Thread Else_Thread

Conditional Statements in SDF
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SDF Architecture

Instruction
Fetch Unit

Decode
Unit

E xecute
U nit

Write-Back
Unit

PC

Reg . Context Regist er Sets

Instruction
Cache

Pr e-Loaded
Threads

Instruction
Fetch Unit

Decode
Unit

Execute
Unit

Write-Back
Unit

PC

Reg . Context RegisterSets

Instruction
Cache

Enabled
Threads

Effective
AddressUnit

Data Cache

Post-Store
Threads

Memory
AccessUnit

Po s t- S t o r e T h r e ad s

W a itin g T h r e a d s

A v ai la b le
Fr a m e s

S ched u ler

En ab led Th read s

FP Reg . Co n tex t IP

P relo ad ed Th read s

S P P ip elin e
Pri or i ty
C o nt ro l

I PReg . C on tex t

F P IP Sy n ch C o u nt

Execute Processor (EP) Memory Access Pipeline

Synchronization  Processor (SP)



Computer Systems Research at 
UNT

27

Execution of SDF Programs

Preload

Preload

Poststore

Thread0

Thread 2

Preload

Preload

Execute

Poststore

Execute

Poststore

Thread 3

Thread 4

SP =PL/PS     EP=EX

Execute

Preload

Poststore

Execute

Execute

PoststoreThread 1
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Some Performance Results
Scalability of SDF (Matrix)
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Scalability  of SDF (Zoom)
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Some Performance Results
SDF vs Supersclar and VLIW

   IPC  IPC  IPC 

 VLIW Superscalar  SDF 

 Benchmark 1 IALU/1 FALU 1 IALU/1 FALU 1 SP, 1 EP 

Matrix Mult  0.334 0.825 1.002 

Zoom 0.467 0.752 0.878 

Jpeg 0.345 0.759 1.032 

ADPCM 0.788 0.624 0.964 

    

 Benchmark 2 IALU, 2FALU 2 IALU, 2FALU 2 SP, 2 EP 

Matrix Mult  0.3372 0.8253 1.8244 

Zoom 0.4673 0.7521 1.4717 

Jpeg 0.3445 0.7593 1.515 

ADPCM 0.7885 0.6245 1.1643 

        

 Benchmark 4 IALU, 4FALU 4IALU, 4FALU 4 SP, 4EP 

Matrix Mult  0.3372 0.826 2.763 

Zoom 0.4773 0.8459 2.0003 

Jpeg 0.3544 0.7595 1.4499 

ADPCM 0.7885 0.6335 1.1935 
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Some Performance Results
SDF vs SMT

   IPC  IPC 

 SMT SDF 

 Benchmark 2 threads 2 threads 

Matrix Mult  1.9885 1.8586 

Zoom 1.8067 1.7689 

Jpeg 1.9803 2.1063 

ADPCM 1.316 1.9792 

     

 Benchmark 4 threads 4 threads 

Matrix Mult 3.6153 3.6711 

Zoom 2.513 2.9585 

Jpeg 3.6219 3.8641 

ADPCM 1.982 2.5065 

      

Benchmark   6 threads 

Matrix Mult   5.1445 

Zoom   4.223 

Jpeg   4.7495 

ADPCM   3.7397 
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Some Scalability Data
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Architecture Model

Speculative Thread Execution
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We extend MESI cache coherency protocol
Our states are: 

011SpR.Sh

111SpR.Ex

010S

110E/M

X0XI

Dirty(Exclusive)ValidSpRead

Speculative Thread Execution
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Speculative Thread Execution

Transition Diagram (processor)
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Speculative Thread Execution

Transition Diagram (bus)
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Speculative Thread Execution

Node structure
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Speculative Thread Execution

Synthetic Benchmark Result

c. SP:EP  50%:50%

b. SP-EP 66%:33%a. SP:EP 33%:66%
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Speculative Thread Execution

Real Benchmarks
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This slide is deliberately left blank
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Two types of localities exhibited by programs
Temporal: an item accessed now may be accessed

in the near future
Spatial: If an item is accessed now, nearby items are

likely to be accessed in the near future

Instructions and Array data exhibit spatial

Scalar data items (such as loop index variable) exhibit temporal

So, we should try to design different types of caches for
arrays and scalar data

Array and Scalar Caches
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Array and Scalar Caches

Comparing Split and Unified Cache 

0

0.05

0.1

0.15
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0.25

0.3

art equake ammp  mesa  applu  sixtr

unified 16k cach

separated 4k
scalar and 2k
array caches

Unified Cache
Direct mapped
Block size: 32 bytes
Split Cache
scalar cache: 2-way set associative

32 bytes blocks
array cache: Direct mapped

128 byte blocks
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Array and Scalar Caches

Summary of Results with array and scalar caches
using SPEC 2000 Benchmarks

43% reduction in Miss rate for benchmark art and mesa 
24% reduction in Miss rate for benchmark equake 

12% reduction in Miss rate for benchmark ammp
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Array and Scalar Caches

Augmenting scalar cache with victim cache and array cache with 
prefetch buffers

What is a Victim Cache?

A small fully associative cache to augment L1
direct mapped cache

On a cache miss, the displaced cache entry is moved to
victim cache

Minimizes the number of conflict misses
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Array and Scalar Caches

Results
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16 k unified
cache
Integrated
approach

Conventional cache configuration: 16k, 32 bytes block, Direct mapped
Scalar cache configuration: 4k, 64 bytes block, Direct mapped

with 8 lined Victim cache 
Array cache configuration: 4k, 64 bytes block, Direct mapped with multiple (4)

10 lined stream buffers
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Array and Scalar Caches

Embedded applications

Tighter constraints on both functionality and  implementation. 

Must meet strict timing constraints

Must be designed to function within limited resources such as 

memory size, available power, and allowable  weight

Split caches can address these challenges
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Array and Scalar Caches

Reconfigurability

• The performance of a given cache architecture is largely  

determined by the behavior of the applications

• Manufacturer typically sets the cache architecture as a 

compromise across several applications

• This leads to conflicts in deciding on total cache size, line size 

and associativity

• For embedded systems where everything needs to be cost 

effective, this “one-size-fits-all” design philosophy is not  

adequate
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Array and Scalar Caches

Reconfigurability

• Our goal is to design caches that achieve high performance 
for embedded applications while remaining both energy 
and area efficient 

• We apply reconfigurability to the design of caches to 
address these conflicting requirements

• Emphasize only on cache size 
• We did not implement reconfigurability for associativity as 

cache splitting and victim caching solves that problem
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Array and Scalar Caches

Benchmarks

Benchmark Description % of 
load/s

tor 

Name 
in fig 

bit counts Test bit manipulation 11 bc 
qsort Computational Chemistry 52 qs 

dijkstra Shortest path problem 34.8 dj 
blowfish Encription/decription 29 bf 

sha Secure Hash Algorithm 19 sh 
rijndael Encryption Standard 34 ri 

string search Search mechanism 25 ss 
adpcm Variation of PCM standard 7 ad 
CRC32 Redundency check 36 cr 

FFT Fast Fourier Transform 23 ff 
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Array and Scalar Caches

Percentage reduction of power, area and cycle for
instruction cache

(a)

0

50

100

bc  qs  dj  bf  sh  ri  ss  ad  cr  ff avg

power
area
time

Conventional cache configuration: 8k, Direct mapped instruction cache, 
32k 4-way Unified level 2 cache

Our Instruction cache configuration:  Size variable, Direct mapped
with variable sized prefetch buffer
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Array and Scalar Caches

Percentage reduction of power, area and cycle for
data cache

(b)

0

50

100

bc  qs  dj  bf  sh  ri  ss  ad  cr  ff avg

power
area
time

Conventional cache configuration: 8k, Direct mapped data cache, 
32k 4-way Unified level 2 cache

Scalar cache configuration:  Size variable, Direct mapped 
with 2 lined Victim cache 

Array cache configuration: Size variable, Direct mapped 
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Array and Scalar Caches

Cache configurations yielding lowest power, area and cache 
access time

Benchmark Instruction cache Prefetch buffer Array cache Scalar cache 
bit counts 256 bytes 256 bytes 512 bytes 512 bytes 

qsort 256 bytes 512 bytes 1k 4k 
dijkstra 1k 2k 512 bytes 4k 
blowfish 1k 1k 512 bytes 4k 

sha 256 bytes 512 bytes 512 bytes 1k 
rijndael 512 bytes 512 bytes 1k 4k 

string search 256 bytes No prefetching  512 bytes 1k 
adpcm 256 bytes 256 bytes 1k 512 bytes 
CRC32 256 bytes 256 bytes 512 bytes 512 bytes 

FFT 1k 1k 1k 4k 
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Array and Scalar Caches

Summarizing
For instruction cache
85% (average 62%) reduction in cache size
72% (average 37%) reduction in cache access time
75% (average 47%) reduction in energy consumption

For data cache
78% (average 49%) reduction in cache size
36% (average 21%) reduction in cache access time 
67% (average 52%) reduction in energy consumption 

when compared with an 8KB L-1 instruction cache and an 8KB L-1 
unified data cache with a 32KB level-2 cache
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If there are no “side-effects” then a function with the same

Inputs, will generate the same output.

Compiler can help in making sure that if a function has

Side-effects or not

At runtime, when we decode “JAL” instruction we know

that we are calling a function

At that time, look up a table to see if the function is

called before with the same arguments

Function Reuse
Eliminate redundant function execution
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Function Reuse
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Here we show what percentage of functions are “redundant”
and can be be “reused”

Function Reuse
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 Benchmark Speedup 
Fib 3.23 

Dijkstra 1.83 
Rawcaudio 1.81 
Bit Count 1.81 
Quick Sort 1.67 

Parser 1.71 
Gcc 1.40 
Perl 1.22 
Ijpeg 1.27 

Vortex 1.42 
M88ksim 1.38 

Go 1.37 

Function Reuse
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Function Reuse



Computer Systems Research at 
UNT

59

Visit our website
http://csrl.csci.unt.edu/

You will find our papers and tools

For More Information
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For object-oriented programming systems, memory management is 

complex and can consume as much as 40% of total execution 

time

Also, if CPU is performing memory management, CPU cache will

perform poorly due to switching between user functions

and memory management functions

If we have a separate hardware and separate cache for memory 

management, CPU cache performance can be improved dramatically

Offloading Memory Management Functions
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Separate Caches With/Without Processor
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Empirical Results
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Execution Performance Improvements
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 Instruction 
Reduction 2T speedup 3T speedup 4T speedup 

Cfrac 23.3% 19.3% 25.26% 30.08% 
espresso 6.07% 9.09% 8.35% 6.27% 
perlbmk 9.05% 14.03% 18.07% 18.35% 
parser 16.88% 17.38% 16.93% 18.61% 
Ave. 13.83% 14.95% 17.15% 18.33% 

 

All threads executing the same function

Performance in Multithreaded Systems
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Each thread executing a different task

 Ave.  #of instruction 
Reduction 

Ave. Performance 
Improvement 

2T 11.52% 14.67% 
3T 12.41% 20.21% 
4T 14.67% 19.60% 

Performance in Multithreaded Systems
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Key cycle intensive portions implemented in
hardware

For PHK, the bit map for each page in hardware
page directories in software
needed only 20K gates
produced between 2-11% performance

Hybrid Implementations
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