

Multisensor Data Fusion and Applications

Pramod K. Varshney Department of Electrical Engineering and Computer Science Syracuse University 121 Link Hall Syracuse, New York 13244 USA E-mail: <u>varshney@syr.edu</u> Website: www.cis.syr.edu/~varshney

Outline

- 1. Overview of Multisensor Data Fusion
- 2. Examples
 - Distributed Detection
 - Multisensor Image Processing
- 3. Some Ongoing Research Projects

Information Fusion

Theory, techniques, and tools for exploiting the synergy in the information acquired from multiple sources: sensors, databases, intelligence sources, humans, etc.

Information Fusion

Goals:

- To obtain a better understanding of some phenomenon
- To introduce or enhance intelligence and system control functions

Human Brain

Integrates sensory information to make inferences regarding the surrounding environment.

Advantages of Multisensor Data Fusion

- Improved system performance
 - Improved detection, tracking, and identification
 - Improved situation assessment and awareness
- Improved robustness
 - Sensor redundancy
 - Graceful degradation
- Extended spatial and temporal coverage
- Shorter response time
- Reduced communication and computing

Applications - Military

- Detection, location, tracking and identification of military entities.
- Sensors: radar, sonar, infrared, synthetic aperture radar (SAR), electro-optic imaging sensors etc.
- Complex problem
 - Large number and types of sensors and targets
 - Size of the surveillance volume
 - Real-time operational requirements
 - Signal propagation difficulties

Applications - Non-military

- Air traffic control
- Law enforcement
- Homeland security
- Medical diagnosis
- Robotics
 - Manufacturing
 - Hazardous workplace
- Remote sensing
 - Crops
 - Weather patterns
 - Environment
 - Mineral resources
 - Buried hazardous waste

Key Issues

- Nature of sensors and information sources
- Location co-located or geographically distributed
- Computational ability at the sensors
- System architecture topology, communication structure, computational resources, fusion level
- System goals and optimization

Fusion Levels

• Data level fusion

commensurate sensors, centralized processing

• Feature level fusion

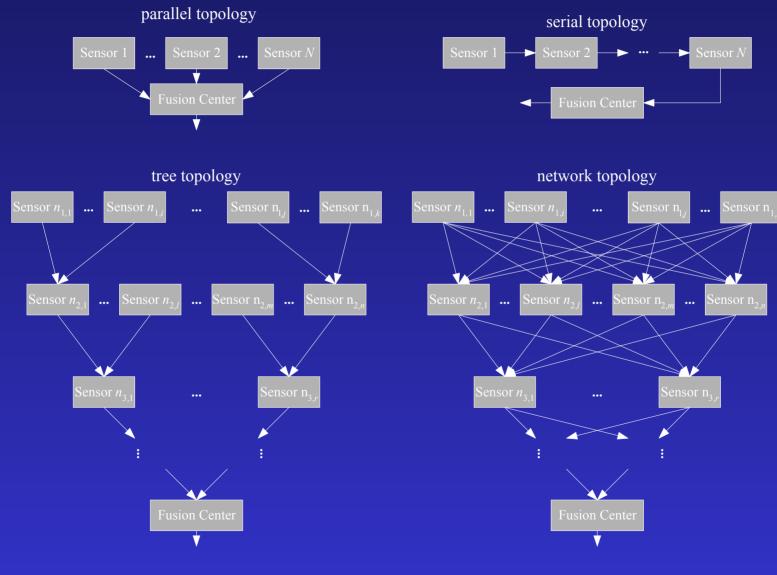
 feature extraction, reduced communication bandwidth requirement

Decision level fusionperformance loss

Introduction to Multisensor Information Fusion

Preliminary information	data	feature	decision			
Bandwidth	possibly very large	medium	very small			
Information loss	no loss	some	possibly significant			
Performance loss	no loss	some	possibly significant			
Operational complexity	high	medium	low			

Introduction to Multisensor Information Fusion



Fusion Techniques for Multisensor Inferencing

Tasks

- Existence of an entity
- Identity, attributes and location of an entity
- Behavior and relationships of entities
- Situation Assessment
- Performance evaluation and resource allocation

Techniques

- Signal detection/estimation theory
- Estimation and filtering, Kalman filters
- Neural networks, Clustering, Fuzzy logic
- Knowledge-based systems
- Control and optimization algorithms

Solution of complex fusion problems requires a multi-disciplinary approach involving integration of diverse algorithms and techniques

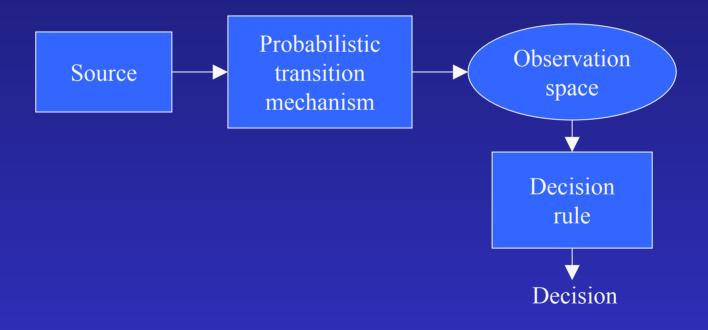
2. Examples

- Distributed Target Detection
- Multisensor Image Processing

The Signal Detection Problem

Binary hypothesis testing:

determination of the presence or absence of a target $(H_1 \text{ vs. } H_0)$



Components of a hypothesis testing problem

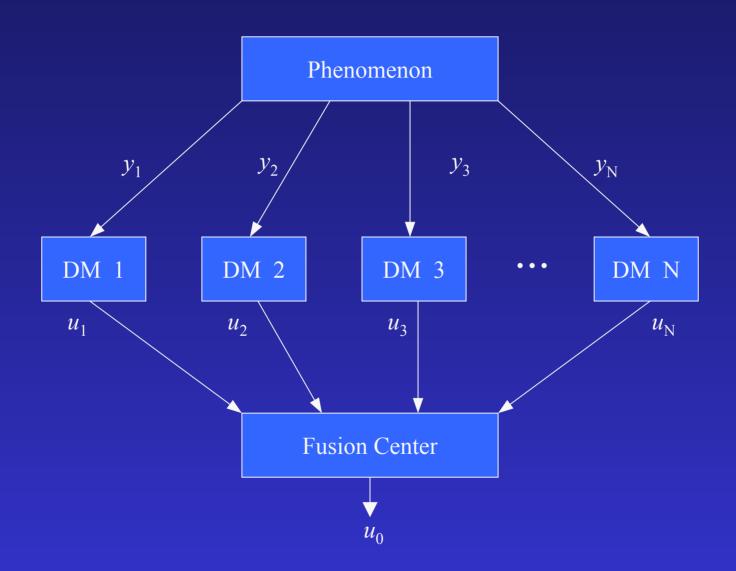
The Distributed Detection Problem

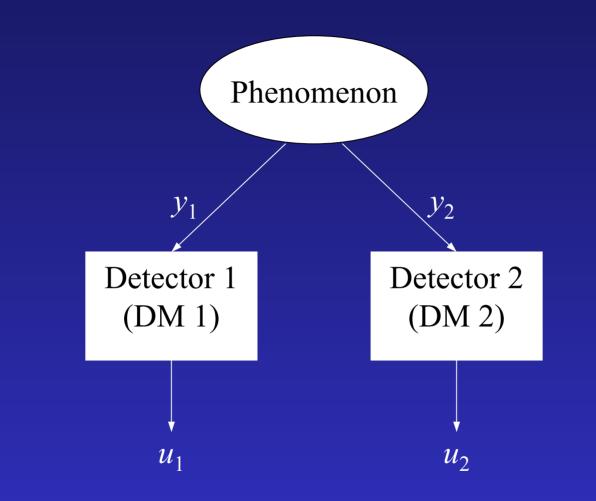
- Solution of a detection problem by a team of interconnected detectors/agents
- Network architecture
 - Sensor placement
 - Fixed vs. mobile sensors
 - Infrastructured vs. ad hoc networks
 - Topology
- Communication and channel bandwidth issues

The Distributed Detection Problem

- Optimization criterion
- Design of optimal signal processing schemes at various detectors and the fusion center
 - •NP-Hard problem
- Performance of centralized detection versus distributed detection

Parallel Fusion Network





A two-detector parallel fusion network without fusion

Distributed Detection without Fusion:

Two hypotheses: H_0 and H_1 A priori probabilities: P_0 and P_1 Sensor observations: y_1 and y_2 Joint conditional density: $p(y_1, y_2, |H_i)$ Costs: C_{ijk} , cost of DM 1 deciding H_i , DM 2 deciding H_j when H_k is present

Local or peripheral decisions: u_i

 $u_i = \begin{cases} 0, & H_0 \text{ is declared present,} \\ 1, & H_1 \text{ is declared present.} \end{cases}$

Objective: Minimization of the Bayes risk \Re

Under conditional independence assumption, the decision rule at each detector is an LRT. Threshold at detector 1 is

$$t_{1} = \frac{P_{0} \int_{y_{2}} p(y_{2} | H_{0}) \{ [C_{110} - C_{010}] + p(u_{2} = 0 | y_{2}) [C_{100} - C_{000} + C_{010} - C_{110}] \}}{P_{1} \int_{y_{2}} p(y_{2} | H_{1}) \{ [C_{001} - C_{111}] + p(u_{2} = 0 | y_{2}) [C_{001} - C_{001} + C_{111} - C_{001}] \}}$$

The two thresholds are functions of each other. t = f(t)

 $\mathbf{t}_1 = \mathbf{f}_1(\mathbf{t}_2)$

 $\mathbf{t}_2 = \mathbf{f}_2(\mathbf{t}_1)$

Observations:

- The above solution provides locally optimum solutions. When multiple local minima exist, we need to search for the globally optimum solution.
- Two thresholds are coupled.

Consider the cost assignment

$$\begin{split} \mathbf{C}_{000} &= \mathbf{C}_{111} = \mathbf{0}, \\ \mathbf{C}_{010} &= \mathbf{C}_{100} = \mathbf{C}_{011} = \mathbf{C}_{101} = \mathbf{1}, \\ \mathbf{C}_{110} &= \mathbf{C}_{001} = \mathbf{k}. \end{split}$$

Assume that the two local observations are conditionally independent, identical and are Gaussian distributed.

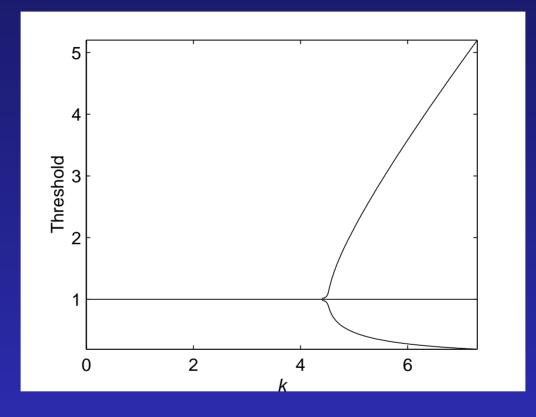
Resulting thresholds are

$$t_{1} = \frac{(k-1) + (2-k) \operatorname{erf} \left(\frac{\sigma \log t_{2}}{m_{1} - m_{0}} + \frac{m_{1} - m_{0}}{2\sigma} \right)}{1 + (k-2) \operatorname{erf} \left(\frac{\sigma \log t_{2}}{m_{1} - m_{0}} - \frac{m_{1} - m_{0}}{2\sigma} \right)},$$

and

$$t_{2} = \frac{(k-1) + (2-k) \operatorname{erf}\left(\frac{\sigma \log t_{1}}{m_{1} - m_{0}} + \frac{m_{1} - m_{0}}{2\sigma}\right)}{1 + (k-2) \operatorname{erf}\left(\frac{\sigma \log t_{2}}{m_{1} - m_{0}} - \frac{m_{1} - m_{0}}{2\sigma}\right)}$$

- Assume that $m_0 = 0$, $m_1 = 1$, and $\sigma = 1$.
- For $1 \le k < 4.528$, there is only one solution $t_1 = t_2 = 1$.
- For k ≥ 4.528, there are three solutions. One of the solutions is t₁ = t₂ = 1 but it does not yield the minimum value of ℜ. The other two solutions need to be used in a pair.



Threshold values as a function of *k*

Fusion Center

Design of Fusion Rules

Input to the fusion center: u_i , i=1, ..., N

$$u_i = \begin{cases} 0, & \text{if detector } i \text{ decides } H_0 \\ 1, & \text{if detector } i \text{ decides } H_1 \end{cases}$$

Output of the fusion center: u_0

$$u_0 = \begin{cases} 0, & \text{if } H_0 \text{ is decided} \\ 1, & \text{otherwise} \end{cases}$$

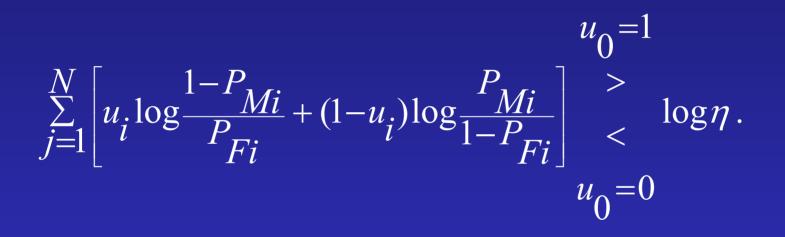
Fusion rule: logical function with N binary inputs and one binary output

Number of fusion rules: 2^{2^N}

Possible Fusion Rules for Two Binary Decisions

Inp	out		Output <i>u</i> ₀															
<i>u</i> ₁	<i>u</i> ₂		f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}	f_{16}
0	0		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	0		0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0		0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1		0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

The optimum fusion rule that minimizes the probability of error is

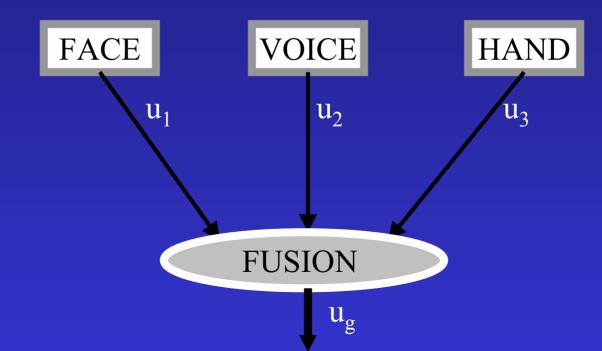


For more information, please refer to

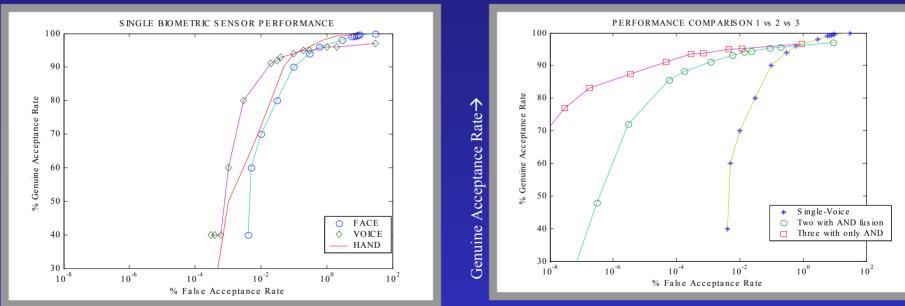
Pramod K. Varshney, *Distributed Detection and Data Fusion*, Springer-Verlag New York, Inc., 1997.

Decision Level Fusion Access Control Using Biometrics

- Each sensor decides to accept or reject the individual prior to fusion .
- A global decision is made at the fusion center.



Performance Improvement Due to Fusion



False Acceptance Rate \rightarrow

False Acceptance Rate \rightarrow

The graph is a illustration of a single sensor, two sensors with AND rule and three sensors with AND between all of them.

Wireless Sensor Networks

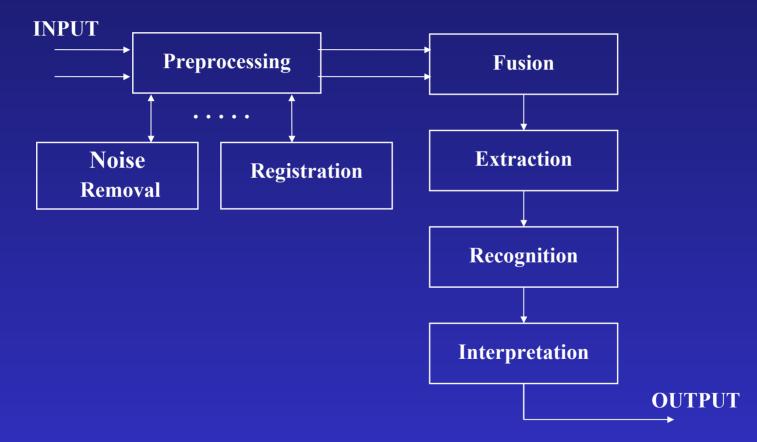
•Typically consist of a large number of low-cost, densely distributed, and possibly heterogeneous sensors.

- •Suitable for battlefield surveillance and environment monitoring.
- •Sensor nodes are battery driven and hence operate on an extremely frugal energy budget.

•Sensor nodes have limited sensing and communication ability.

•Many recent results on detection/classification for this scenario.

Multisensor Image Processing Steps



Multisensor Image Registration

- Goal: Alignment of images
- Techniques
 - Feature based techniques
 - Involve feature extraction, feature matching...
 - Case dependent
 - Intensity based techniques
 - Mutual information based image registration
- Applications
 - Concealed Weapons Detection (CWD) application
 - Remotely sensed images
 - Brain image registration

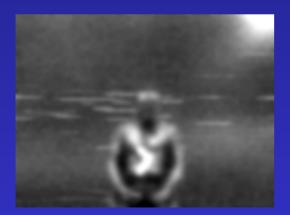
Mutual Information Based Registration

- Use the mutual information between two images as a similarity measure
- Proposed independently by Viola, Wells and Maes, Collignon in 1995
- It is a very general similarity measure because it does not rely on any specific relationship between the intensities of the two given images.
- It is assumed that the mutual information reaches its maximal value when images A and B are registered.

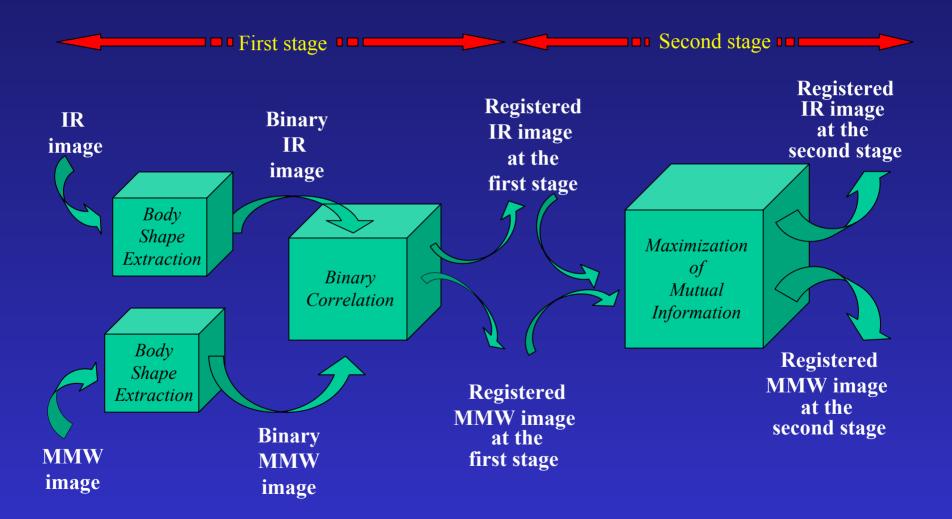
CWD Application

•Images taken from the same sensor but different viewpoints

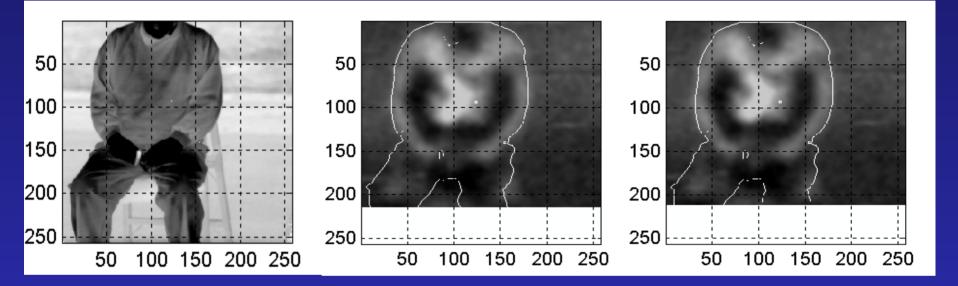
• Images taken at the same time, but from different type of sensors



Registration Algorithm



Results

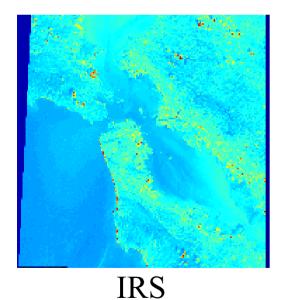


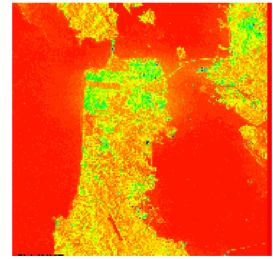
	x-displacement	y-displacement	Rotation	Scale
First Stage	62.5	12.5	0	0.40
Second Stage	64.10	14.21	3.15	0.414

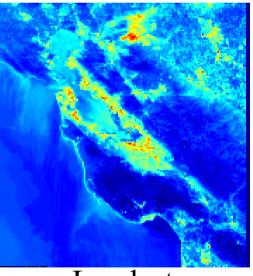
Registration of Remotely Sensed Images

- Many sensors are commonly used for remote sensing:
 - Landsat
 - IFSAR
 - IRS
 - Aviris
 - Radarsat
- The goal is to develop a general, robust registration algorithm based on mutual information

Typical images from different sensors

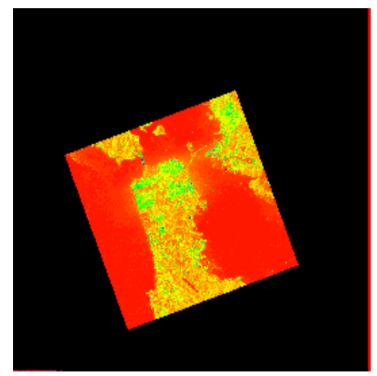


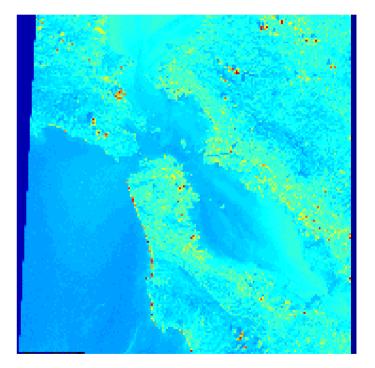




Landsat

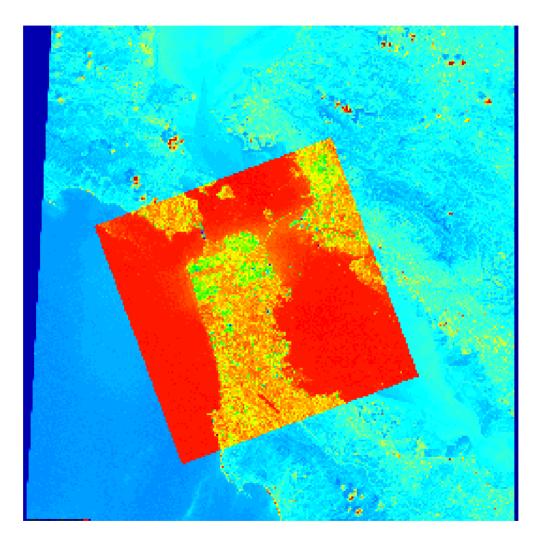
Registration Results





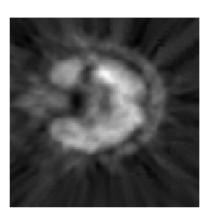
IRS

Radarsat

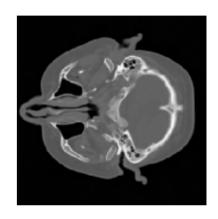


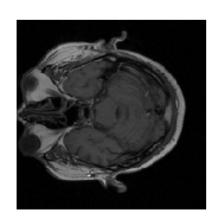
Registration of Brain Images

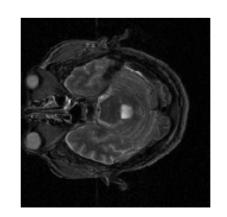
- Modalities
 - PET image
 - CT image
 - MR_T1 image
 - MR_T2 image
 - MR_PD image



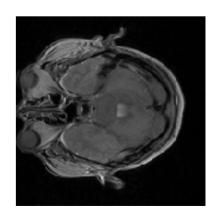
PET







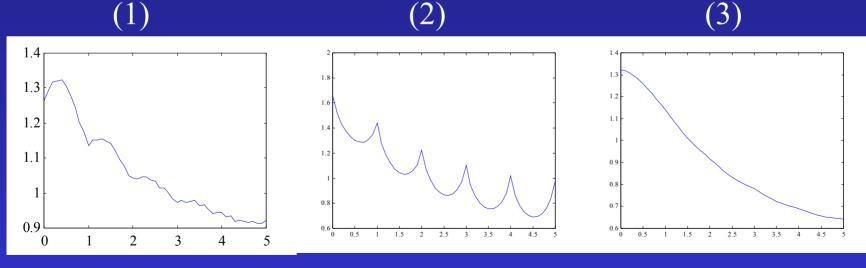
Т2



CT

Contributions

- Development of a new joint histogram estimation scheme to remove artifacts
- Improved accuracy when artifacts are present



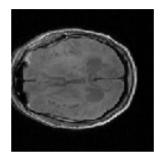
Linear interpolation

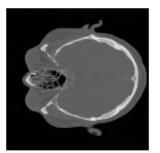
Partial Volume Interpolation Generalized Partial Volume Estimation

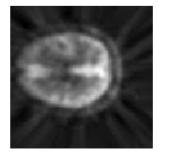
Results (Before Registration)

Slice 1

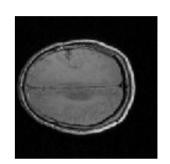
Slice 8

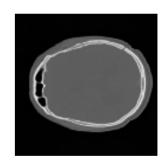


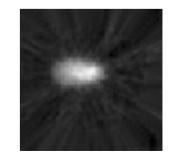




Slice 15

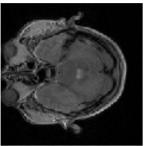


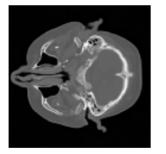


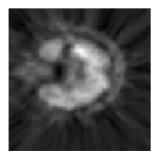


MR_PD

PET

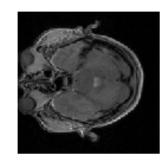


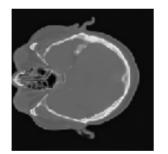


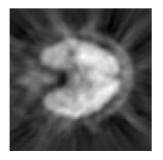


Results (After Registration)

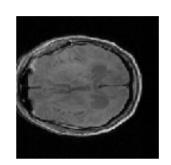
Slice 1

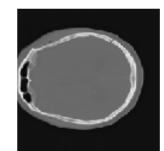


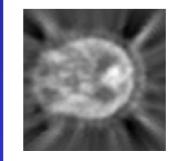




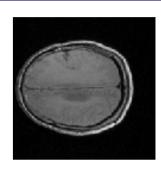
Slice 8

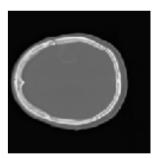






Slice 15





CT

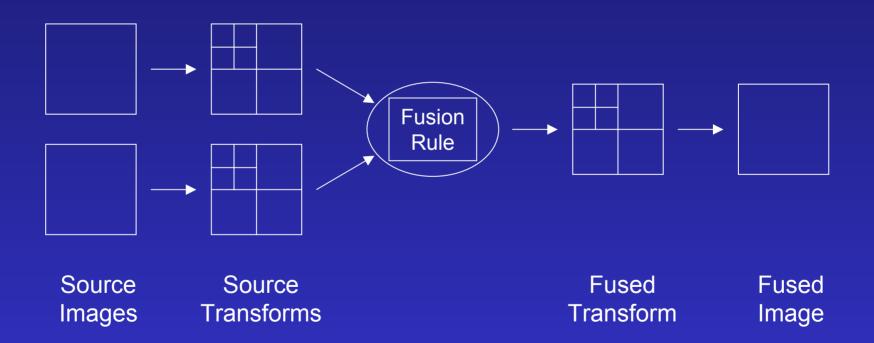
PET

MR PD

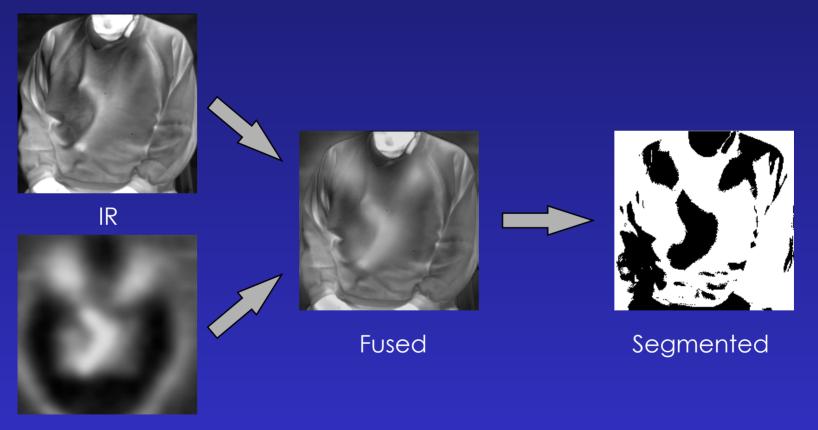
Image Fusion

• Utilize images from multiple sensors to form a composite image with increased information content

General Fusion Process



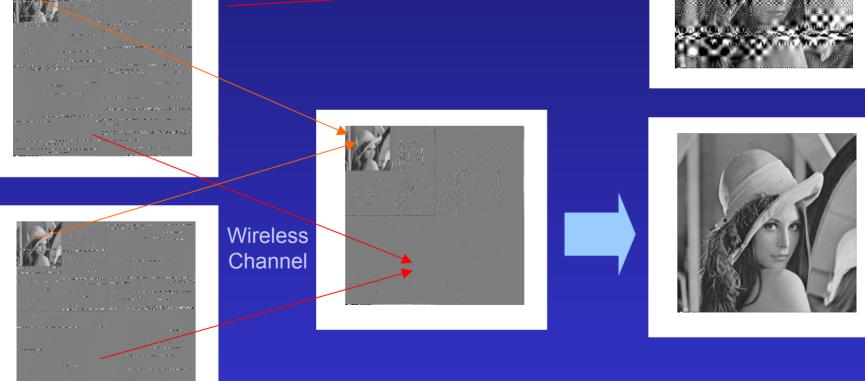
Example 1: CWD application



MMW

Example 2: Wireless communication application

Without fusion



3. Some Ongoing Research Projects

Some Ongoing Research Projects

- Image Registration
 - MI based
 - Intelligent approach
- Multi/Hyperspectral Image Processing
 - Feature extraction
 - Classification
 - Target Detection
 - Spectral Unmixing

* P. K. Varshney and M.K.Arora, *Advanced Image Processing Techniques for Remotely Sensed Hyperspectral Data*, Springer, 2004

Some Ongoing Research Projects

- Video Surveillance
 - Tracking
 - Activity Recognition
 - Multi-modal Fusion
 - * G.L. Foresti, C.S. Regazzoni and P.K. Varshney (Eds.), *Multisensor Surveillance Systems : The Fusion Perspective*, Kluwer Academic Press, 2003.
- Fusion for Detection/Classification/Tracking
 - Wireless Sensor Networks
 - Vehicle Health Management
- Environmental Quality Systems
 - Center of Excellence in Environmental and Energy Systems (http://eqs.syr.edu/)

