Incorporating FPGAs in Test Applications

NI Technical Conference
Long Island Nov 10, 2009
Terry Stratoudakis, P.E.
ALE System Integration
Agenda

• Introduction to FPGAs in test
• FPGAs in test applications
 ▪ New FPGA-enabled applications
 ▪ FPGA-enhanced applications
• FPGA for test hardware
 ▪ Examples
• Programming in LabVIEW FPGA for test applications
Introduction to FPGAs in Test
Software-Defined Test System Architecture

Standard Virtual Instrumentation Model

Application Driver Bus Interface and I/O Control Measurement
Analog or Digital Front End

Software Hardware

DC Volt 2.7562

Technical Symposium
Field Programmable Gate Arrays

- Introduced in 1987
- Customizable Integrated Circuit (IC)
 - Similar to Application Specific ICs (ASICs)
- No Operating System
- Configured with Hardware Descriptor Language (HDL)
- Parallel Execution
- Millions of configurable gates on a single chip
Who makes FPGAs?

• Actel
• Aeroflex UTMC
• Lattice Semiconductor
• And others...

*Market leaders

FPGA Configuration Tools

- **Direct**: Hardware Description Languages (HDL)
 - akin to assembly language
 - **Examples**: Verilog and VHDL

- **High-Level**
 - FPGA design accessible to software engineers
 - Text based using C or Matlab with concurrency models
 - **Examples**: “Impulse C” and “Mentor Graphics Catapult C”
 - Graphical/Flow based with LabVIEW FPGA
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity test_add is
 generic (width : integer := 17);
 port (clk : in std_logic;
 reset : in std_logic;
 enable : in std_logic;
 inpl, inp2 : in std_logic_vector (width downto 0);
 sum : out std_logic_vector ((width + 1) downto 0));
end test_add;

architecture rtl of test_add is
 constant terminal_count : integer := 2**{ sum'high + 1 } - 1;
 subtype adder_range is integer range 0 to terminal_count;
 signal sumx, inplx, inpx2 : adder_range;
begin -- rtl
 sum <= std_logic_vector(to_unsigned({ sumx, width + 2 }));
 inplx <= to_integer (unsigned (inpl));
 inpx2 <= to_integer (unsigned (inp2));

 adder : process (clk, reset)
 begin
 if reset = '0' then
 sumx <= 0;
 elsif rising_edge (clk) then
 if enable = '1' then
 sumx <= inplx + inpx2;
 end if;
 end process adder;

 sum <= to_unsigned (sumx, width + 1);
end rtl;
C-Based Example Image Filter excerpt*

```c
int main()
{
    // do some preprocessing
    //...

    for (i = 2; i < HEIGHT; i++) {
        // Note: the following loop will pipeline with a rate of
        // one cycle if the target platform supports dual-port RAM.
        for (j=0; j < WIDTH; j++) {
            #pragma CO PIPELINE
            p04 = B[j];
            p14 = C[j];
            p24 = D[j];
            p34 = E[j];
            co_stream_read(input_stream, &p44, sizeof(co_uint16));
            co_stream_write(r0, &p04, sizeof(co_uint16));
            co_stream_write(r1, &p14, sizeof(co_uint16));
            co_stream_write(r2, &p24, sizeof(co_uint16));
            co_stream_write(r3, &p34, sizeof(co_uint16));
            co_stream_write(r4, &p44, sizeof(co_uint16));
            S[j] = p14;
            C[j] = p24;
            D[j] = p34;
            E[j] = p44;
        }
    }
}

*Using “Impulse C”

2009 NI Technical Symposium
Graphical Based Matrix Math Example

*Using “LabVIEW FPGA”

2009 NI Technical Symposium
FPGA Logic Implementation

Implementing Logic on FPGA: \( F = (A+B)CD \oplus E \)

LabVIEW FPGA Code

Interconnect Resources
True Parallelism

2009 NI Technical Symposium
System intelligence and decision making can be moved from software to hardware.
Benefits of FPGAs in Test Systems

- **High Reliability** – Designs implemented in hardware
- **Low Latency** – Run algorithms at deterministic rates down to 5 ns
- **Reconfigurable** – Create DUT / application-specific personalities
- **High Performance** – Computational abilities open new possibilities for measurement and data processing speed
- **True Parallelism** – Enables parallel tasks and pipelining, reducing test times
FPGAs in Test Applications

New FPGA-enabled applications
RFID Testing

RFID Reader (Emulated)  
RFID Tag (DUT)  

Stimulus  
Response
RFID Testing – Response-Stimulus

- Testing an RFID tag requires emulating the tag reader
  - Interrogates and responds to tag within microseconds
- Coding/decoding, modulation/demodulation, and decision making must be completed in hardware to meet timing

Closed-Loop Test
Real-time spectral measurements
FPGAs in Test Applications

FPGA-enhanced applications
A Simple Digital Protocol: \( \text{I}^2\text{C} \)

**Traditional Approach**
- Static stimulus and expected responses
- Difficult to accommodate multiple clock domains
A Simple Digital Protocol: I²C

Protocol-Aware Approach

- Intelligence built into the tester
  - Accommodates wait cycles
  - Easy to cross clock domains
- Test with high-level commands
  - Real-world scenario
  - Inherently easier to program
System Control

- Transfer of system timing and decision making from software to hardware

PXI Data or Trigger Bus

Test System Control

Instrument Controller (SMC) (FPGA)

Instrument Controller (SMC)

ADC

Digital Communication

DAC

DUT

ni.com
## FPGA for Test Application Areas

<table>
<thead>
<tr>
<th>Area</th>
<th>Features</th>
</tr>
</thead>
</table>
| Processing                | • Real-time / co-processing
  • Data reduction / in-line processing                                     |
| Protocols                 | • Protocol-aware ATE
  • Interfacing (digital or modulated)                                        |
| Closed-Loop Test          | • Response-stimulus test
  • Hardware-in-the-loop (HIL)                                                 |
| Test System Control       | • Digital DUT interfacing and command
  • Complex triggers                                                            |

---

2009 NI Technical Symposium
FPGA for Test Hardware
COTS Integration of FPGAs

Example: NI FlexRIO (?)
NI FlexRIO System Architecture

NI FlexRIO Adapter Module
- Interchangeable I/O
- Customizable by users
- Adapter Module Development Kit (MDK)

NI FlexRIO FPGA Module
- Virtex-5 FPGA
- 132 digital I/O lines
- 128 MB of DDR2 DRAM

PXI Platform
- Synchronization
- Clocking/triggers
- Power/cooling
- Data streaming

2009 NI Technical Symposium
NI FlexRIO FPGA

- Virtex-5 LX30
- Direct access
- 132 serializer/deserializer pairs
- 400 Mbps
- 1 Gbps
- 128 MB memory
- 2x 64-bit interface
- 800 MB/s
- Adapter model...
NI FlexRIO Adapter Module

- Card edge connector
- Defines I/O for NI LabVIEW FPGA
- Self identification
- Custom connectivity
- Adapter Module Development Kit (MDK)
NI FlexRIO Adapter Module Options

**NI Modules**
- Complete integration with LabVIEW FPGA
- R Series-like experience

**Third-Party Modules**
- Expands NI I/O breadth
- Custom and application-specific modules

**Custom Modules**
- Requires PCB and HDL design work
- Supported through MDK
NI 6581
High-Speed Digital Adapter Module

- 100 MHz digital I/O
- 54 single-ended channels
- Selectable voltage levels
  - 1.8, 2.5, 3.3 V (5 V compatible)
- External DIO voltage reference
  - 1.8 to 5.5 V
  - Configurable by connector
NI 6585
200 MHz LVDS Digital Instrument

- 200 MHz digital I/O
- 32 / 42 LVDS channels
- 200 Mbps SDR, 300 Mbps DDR

PXI-6585R

2009 NI Technical Symposium
NI FlexRIO Partner Modules

**Prevas**
- Gigabit Ethernet interfaces
- MAC and Ethernet frames
- Fault-injection software

**ADSYS Controls Inc.**
- Camera Link Interface
- High-speed image processing
- Low-latency control

**Averna**
- IEEE-1394b interface
- 3 ports at 800 Mbps

**NexFrontier**
- 100 MHz vector digital I/O
- 8 ch. per-pin PMU

NI FlexRIO Partner Modules

2009 NI Technical Symposium
Custom NI FlexRIO Adapter Module Development Kit (MDK)

- 6 W Power – electrical and thermal limit
- 3.3 V (1 A) and 12 V (200 mA) rails
- LVTTTL (3.3 V), LVCMOS (1.2, 1.5, 1.8, 2.5, 3.3 V), LVDCI (1.5, 1.8 V, 2.5, 3.3 V), LVDS (2.5 V)
  - 400 Mbps (Single-Ended), 1 Gbps (Differential)
- I²C EEPROM for module identification and user-defined storage
- NI Mechanical Enclosures
Demo: Digital Filtering
NI PXIe-5641R RIO IF Transceiver

- 2 IF Inputs and 2 IF Outputs
- 14-bit ADCs and DACs
- 20 MHz Instantaneous Bandwidth (25 MS/s I/Q)
- IFs from 250 kHz to 80 MHz
- Xilinx Virtex-5 SX95T LabVIEW-programmable FPGA
FPGA for Test Hardware

*How NI FlexRIO and the PXIe-5641R fit into FPGA for test applications*
RFID Testing – Response-Stimulus

- FPGA on PXie-5641R IF Transceiver can perform necessary processing
- Upconverter and downconverter condition the signal for the correct RF frequency of the tag
A Real-Time Spectrum Analyzer
A Simple Digital Example: $I^2C$

Protocol-Aware Approach

- Intelligence built into the tester
  - Accommodates wait cycles
  - Easy to cross clock domains
- Test with high-level commands
  - Real-world scenario
  - Inherently easier to program
Sparkle Code Counter

Single-Cycle Timed Loop

I/O Node
Bit Error Rate Test

- DRAM Read
- Multiplexer
- I/O Node
- Delay
3 GS/s Trigger for Data Reduction

I/O Nodes

Delay

~0

Delay

~0

Pipeline

2009 NI Technical Symposium
Real-Time Frequency Measurements

Stage 1

Stage 2

Stage 3

Stage 4

2009 NI Technical Symposium
Conclusions

• FPGAs enable some types of test applications not previously possible, and make others faster

• LabVIEW FPGA represents a powerful hardware programming paradigm for test engineers and system integrators