Introduction to the NI Real-Time Hypervisor
Agenda

1) NI Real-Time Hypervisor overview
2) Basics of virtualization technology
3) Configuring and using Real-Time Hypervisor systems
4) Performance and benchmarks
5) Case study: aircraft arrestor system
NI Real-Time Hypervisor Overview
NI Real-Time Hypervisor

- Run NI LabVIEW Real-Time and Windows XP in parallel
- Partition I/O devices, RAM, and CPUs between OSs
- Uses virtualization technology and Intel VT
Benefits of the Real-Time Hypervisor

• Capability: make use of real-time processing and Windows XP services

Applications

Graphics

Services

Determinism

Real-Time I/O

Timing
Benefits of the Real-Time Hypervisor

• Consolidation: reduce hardware costs, wiring, and physical footprint
Benefits of the Real-Time Hypervisor

- Efficiency: take advantage of multicore processors effectively

Quad-Core Controller with Virtualization

Windows XP | LabVIEW Real-Time
Basics of Virtualization Technology
What Is Virtualization?

• **The term:** refers to abstraction of OSs from hardware resources

• **In practice:** running multiple OSs simultaneously on a single computer
Virtualization Software Architectures

- Software: virtual machine monitor (VMM) or Hypervisor
- Two main variations: hosted and bare-metal

Hosted (VMWare)
- OS 1
- OS 2
- Hypervisor Software (VMM)
- Host OS
- Hardware

Bare-Metal (NI Real-Time Hypervisor)
- OS 1
- OS 2
- Hypervisor Software (VMM)
- Hardware
How Does Virtualization Software Work?

- OSs are “unaware” of being virtualized
- Hypervisor is called only when needed
- Various mechanisms for calling the hypervisor (hardware assist with Intel VT or binary translation)

Hypervisor goal: facilitate simultaneous operation of OSs and protect access to shared system resources
Example: Accessing Shared I/O Devices

- OS 2 attempts to transfer data to disk
- Processor with Intel VT calls hypervisor
- Hypervisor writes to disk using its own driver

Note: NI Real-Time Hypervisor does not typically do this; devices are partitioned rather than shared
Example: Accessing Partitioned I/O Devices

- NI Real-Time Hypervisor allows OSs to communicate directly with partitioned I/O boards
Configuring and Using Real-Time Hypervisor Systems
Using NI Real-Time Hypervisor Systems

- **Configuration**: NI Real-Time Hypervisor Manager

- **Communication**: virtual Ethernet and virtual console

- **Development and Deployment**: similar to traditional real-time systems
Assigning I/O and RAM between OSs
Demo: Configuring a Real-Time Hypervisor System
Booting Into the Hypervisor

NI Real-Time Hypervisor GRUB 2009 (Based on GRUB version 0.97) (623K lower / 2057152K upper memory)

Microsoft Windows
NI Real-Time Hypervisor

Use the ↑ and ↓ keys to select which entry is highlighted. Press enter to boot the selected OS, ’e’ to edit the commands before booting, or ’c’ for a command-line.
Accessing the Real-Time Target in NI Measurement & Automation Explorer (MAX)
Communicating between OSs

Virtual Ethernet

Virtual Console (COM 4)
Demo: Exploring Real-Time Hypervisor Features
LabVIEW Development and Deployment

- Extremely similar to traditional NI real-time systems
Demo: Deploying an Example LabVIEW Real-Time Application
Performance and Benchmarks
Interrupt Latency and Performance Impact

Windows XP

LabVIEW Real-Time

NI Real-Time Hypervisor

I/O Device or Communication Request

Interrupt
Benchmarks for Single-Point DAQ Application (Interrupts)

<table>
<thead>
<tr>
<th>I/O Channels (with PID)</th>
<th>Maximum Loop Rate with Hypervisor (kHz)</th>
<th>Maximum Loop Rate without Hypervisor (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.5</td>
<td>25.4</td>
</tr>
<tr>
<td>4</td>
<td>9.3</td>
<td>22.6</td>
</tr>
<tr>
<td>16</td>
<td>7.0</td>
<td>12.4</td>
</tr>
</tbody>
</table>

Use polling to improve I/O performance on hypervisor systems.
Benchmarks for Typical Large DAQ Application (Polling)

<table>
<thead>
<tr>
<th>Application</th>
<th>Maximum Loop Rate with Hypervisor (kHz)</th>
<th>Maximum Loop Rate without Hypervisor (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large DAQ App.</td>
<td>12.0</td>
<td>14.5</td>
</tr>
</tbody>
</table>

Most LabVIEW Real-Time applications running between 1 and 5 kHz will be able to run at full rate on a Real-Time Hypervisor system.
Communication Benchmarks

Throughput on Hypervisor and Nonhypervisor Systems

- Physical Ethernet (w/ hypervisor)
- Virtual Ethernet (w/ hypervisor)
- Physical Ethernet (no hypervisor)
Case Study
Process Automation: Aircraft Arrestor Test System

- Dynamically testing a system to rapidly decelerate jet aircraft
- Combining real-time simulation, I/O, and user interface on one controller
- Reducing cost and footprint using the Real-Time Hypervisor

“By consolidating the components of our real-time test system onto one controller, the NI Real-Time Hypervisor will reduce our hardware cost and lower our application footprint.”
– Greg Sussman, Process Automation
NI Real-Time Hypervisor Ordering Information

- Real-Time Hypervisor and OS software preinstalled

- Supported hardware
 - NI PXI-8108 and PXI-8110
 - NI 3110 industrial controller

- $499 USD (Real-Time Hypervisor Deployment License only)
Additional Resources

• NI virtualization portal (ni.com/virtualization)
 ▪ Background on virtualization technology
 ▪ Real-Time Hypervisor virtual tour
 ▪ Architecture details, benchmarks, and programming recommendations

Notice: All trademarks are the property of their respective owners