Overlooked Loss Mechanisms In Flyback Transformers

Isaac Cohen
Agenda

• Flyback transformer basics
• Review of Flyback transformer losses:
 – Core loss
 • Dependence on DC bias
 • Effect of waveform and duty cycle
 – Effect of snubber clamp voltage on leakage losses
• Effect of input voltage range on the FB transformer power density
Core Loss – Effect of Waveform & DC Flux Bias

- **Traditional assumptions:**
 - DC Bias has no effect
 - Square-wave close to sine

- **Traditional method:**
 - Calculate ΔB_{ac} at F_{sw}, neglect B_{dc}
 - Core material manufacturer data sheet:
 - Read core loss at ΔB_{ac} and F_{sw}
 - Loss data provided for sine excitation

- **The reality:**
 - Waveform and duty cycle have significant impact on core loss
 - DC bias has significant impact on core loss
 - Several papers published on the subject
 - *Reference [1] and [2] provide most useful information*

Effect of Waveform on Core Loss [1]

- Proposed curve fit equation for square-wave excitation, based on measured data:
 \[
 \frac{P_{v_rect}}{P_{v_sine}} = F_{wave_form} = \frac{8}{\pi^2 \cdot [4D \cdot (1-D)]^{\gamma+1}}
 \]
 (Eq. 1)

- \(P_{v_sine}\) – conventionally-calculated core loss
 - For sinewave excitation of equal flux swing (available from the material data sheet)

- \(D\) – duty cycle of square-wave

- \(\gamma\) – correction factor
 - Depends on material, frequency & temperature
 - Could be measured and provided by the magnetic material manufacturers
 - Values for several ferrites at 25°C empirically determined in [1]

<table>
<thead>
<tr>
<th></th>
<th>200kHz</th>
<th>500kHz</th>
<th>1MHz</th>
<th>1.5MHz</th>
<th>3MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>3C90</td>
<td>-0.37</td>
<td>-0.12</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3F3</td>
<td>-0.37</td>
<td>-0.12</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3F35</td>
<td>-</td>
<td>-0.12</td>
<td>0.15</td>
<td>0.18</td>
<td>-</td>
</tr>
<tr>
<td>3F5</td>
<td>-</td>
<td>-</td>
<td>-0.5</td>
<td>-0.05</td>
<td>-</td>
</tr>
<tr>
<td>N49</td>
<td>-0.35</td>
<td>0.16</td>
<td>0.15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DMR50B</td>
<td>-0.4</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4C65</td>
<td>-</td>
<td>-</td>
<td>-0.7</td>
<td>-</td>
<td>-0.7</td>
</tr>
</tbody>
</table>

F_{waveform} for Square-wave vs. D at F_{sw} 1 MHz \cite{1}

- 50% duty-cycle
 -> lower loss than sine
- Significant loss increase as duty cycle approaches 100% or 0%
- Some new HF materials perform noticeably better at duty cycle extremes:
 - 3F5
 - 4C65

- **Recommendation**
 - make your own in-circuit measurements
 - ask TI for help

\[\frac{P_{v_{\text{rect}}}}{P_{v_{\text{sin}}}} \]

\begin{figure}
\centering
\includegraphics[width=\textwidth]{chart.png}
\end{figure}

\begin{itemize}
 \item \cite{1} “A New Core Loss Model for Rectangular AC Voltages”, Mingkai Mu, Fred C. Lee, CPES, Virginia Tech, ECCE 2014
Effect of DC Bias \[2\]

• DC Bias shown to have significant impact on core loss
 – Many different papers published

• The effect is measured and quantified for two ferrite core materials:
 – 3F35
 – PC90

• A function \(F(H_{dc}) \) is developed (by curve fit to measured data)

• Enables calculation of core loss under DC bias

Loss vs. DC Bias Normalized to zero DC Bias [2]

3F35 @ 500 kHz, vary B_{pk}, D

Curve fit: $F(H_{dc}) = 2.1875 \times 10^{-4} H_{dc}^2 + 1$

PC90 @ 1 MHz, vary B_{pk}, D

Curve fit: $F(H_{dc}) = \sqrt{0.04 \times H_{dc} + 1}$

Core Loss Discussion Points

• DC bias, wave-shape & Duty-cycle cannot be neglected!
 – *May help to explain excess core loss in some situations*

• Practical method to account for effects:
 \[P_{v_{\text{total}}} = P_{v_{\text{sine}}} \cdot F_{\text{waveform}}(\gamma, D) \cdot F_{\text{DC}}(H_{\text{DC}}) \]
 (Eq. 2)

• Effect of extreme duty cycles on loss
 – Often-neglected penalty for wide input and/or output voltage range
 – *Advantage of Flyback over Forward: Lower D range for same input voltage variation*

• Effect of DC bias on core loss
 • Effect on materials other than ferrite not known.
 – May significantly reduce the benefit of deep CCM operation
 – Illustrates advantage of double-ended topologies over single-ended

• **Users need to insist that ferrite manufacturers provide** \(\gamma \) **and** \(F_{\text{DC}} \) **data!**
• **Recommend making your own in-circuit measurements**
Impact of Snubber Clamp Voltage

• Switch Q turn-off:
 – Energy -> clamp until L_{leak} current -> zero
 – Time depends on ($V_{clamp} - V_{reflected}$) difference & on L_{leak} value
 – Also magnetising energy -> clamp
 – Smaller difference ($V_{clamp} - V_{reflected}$)
 => more magnetising energy absorbed by the clamp

• Lower clamp voltage
 – Lower voltage FET, lower R_{dson}
 – But extra clamp loss
 • Clamp loss can out-weigh FET loss saving

• Higher clamp voltage
 – Higher voltage FET => higher R_{dson}
Comparison of Clamp Level Effect

Vclamp/Vo*1.1 (Np/Ns=1)

Vclamp/Vo*1.5 (Np/Ns=1)
Effect of Clamp Voltage on Energy Loss

- Lower clamp voltage attracts more magnetizing energy to the clamp!
- Can defeat, or even out-weight, benefit of lower R_{dson}

\[\frac{V_{clamp}}{N \cdot V_{out}} \]

\[\gamma(\alpha, \%) \]

\[\frac{L_{\text{leak}}}{L_{\text{mag}}} = 5\% \]

\[\frac{L_{\text{leak}}}{L_{\text{mag}}} = 2.5\% \]

\[\frac{L_{\text{leak}}}{L_{\text{mag}}} = 1\% \]
Effect of the input voltage range on power density of Flyback TM converters

- How does the input voltage range affect the power density and/or the efficiency of a FB transformer?
- Investigate the effect of input voltage range on loss of Flyback transformers
- To verify, design a TM Flyback converter optimized to deliver a power P at a frequency F and an input voltage V_{in}.
- Examine the effect of reducing the input voltage V_{in} by a factor K_v
Mag Current at $V_{in}=375V$ and $70V$ input

- Frequency decreases, peak current must increase to maintain same output power
- Energy storage in the transformer ($=\text{size}$) must increase
- Output cap must increase
Analysis result

- The volume of a TM transformer designed to deliver a power P at 375V has to be increased by a factor of 2.361 to deliver the same power at 70V!!!
 - CCM is only slightly better: Starting in TM at high line, the volume of a TM transformer will increase by a factor 2.044

- The output cap will increase by a factor of between 2 and 3 (depending if selection dominated by capacitance or ESR)
 - Much smaller increase for CCM (frequency is fixed)

- The effect on other topologies will also be significant

- Reducing the dynamic range of the input voltage is very beneficial for density and/or efficiency improvement
 - That’s a justification for two stage conversion and the phenomenal power density of “DC transformers”!
Verification: High L_{mag} vs. Low L_{mag}

- Valley Switched Flyback Transformer designed to work at $70V < \text{Vin} < 375V$ has been re-gapped for operation over $200V < \text{Vin} < 375V$ range
- Significant efficiency improvement: 2% - that is 35% reduction in total loss!
Appendix

Ferroxcube Power Ferrites Core Loss Calculator
Recommended literature & further reading