

King of the Engineering Art: the What?

- The Art of the Artificial!! What about Natural Philosophy?
- **Synthesis!!** What about Analysis?
- Prognostic!! What about Diagnostic?

Passive Network Synthesis

Aha! To Algorithmatize the Design Process! The Epitome of the Engineering Art!! Off with Your head.

What We Did!

□ 1910s and 20s

- Developed Explicit Algorithms for Designing Passive LC Filters.
- Established a Billion Dollar (in 1930s Dollars) Industry Designing Passive LC Telephone Filters.
- Made Modern Telefony Possible!

🗆 1930s

- Passive Network Synthesis
- Academic but it Taught us how to Handle Resistive Loads.

What Else We Did – Not Much

□1940s

- Developed Explicit Algorithms for Designing Passive n-Ports
- Done Independently in 4 Countries During WWII
- Absolutely Beautiful Totally Worthless

□ 1950s – The Golden Age of Circuit Theory

 Didn't do Anything Much, unless you count the Resistive n-port Problem – The Worlds Greatest Career Destroyer

□1960s - Goodbye

What Happened?

- Cheap Transistors: When the price of a CK722 went from \$99 to 99¢ in 6 Months
 - The Passivity Constraint Disappeared, and since *Design with Constraints is What Engineering is All About*, the Fun Disappeared Too!
 - Of Course, We hadn't Discovered Sensitivity and Noise Floors Yet!
 - Since Our Company is at WAR with Raytheon, I Shouldn't Admit that, as a High School Hobbyist, I Bought my First CK722 at Allied Radio when it Passed the \$25 Threshold.

What Else Happened?

Expensive Computers:

When the Mainframe Replaced a Roomful of Graduate Students with Mechanical Calculators Engineering Art was Replaced by Brute Force.

Passive Network Synthesis: RIP

What's This Have to do with Camelot?

□ Let P = ND⁻¹, where N and D are Stable and Coprime, i.e., there exist Stable U and V such that; UN + VD = 1.

Then the set of all possible Stabilizing Feedback Gains may be Parameterized by F = [DW+U][NW+V]⁻¹ where W is Stable

What Did Dan Do?

Mommy: He's Mean

- **NO**, He didn't Algorithmatize the Solution of All Linear Control Problems
- **BUT**, He Did Parameterize the Constraint Set

- The Solution of "Most" Linear Control Problems Follows From the Youla Parameterization.
 - $\Box H_2$ and H_{∞} Optimal Control,
 - □Tracking and Disturbance Rejection
 - □Pole and Zero Placement
 - Robust Control and Simultaneous Design

It'll Never Work!!

Yes it Will

Why not Learn the Design?

Just Design a Generic Control Architecture or Two and let it Learn the Design in Real Time

The Trick is to use Measurements of the Actual System in Operation Instead of a Model of the System

This Algorithmatizes the Design Process and Yields an Adaptive Controller which Compensates for

- System Failures and Environmental Changes

Two Adaptive Control Algorithms

Neural Adaptive (Tracking) Controller

- Adaptive Dynamic Programming (Optimal) Controller
- □ Both Algorithms are:
 - Nonlinear
 - MIMO
 - Require "Minimal" *a priori* Knowledge About Plant[#]
 - Characterized by a Full Stability Theory

Vertical Component

Elevator Deflection

LoFLYTE® Neural Adaptive Control

Uncompensated, 100 kts, 1500 ft Three Axes Commanded Destabilization (CG from 51% to 56% at 6s)

Compensated, 100 kts, 1500 ft Three Axes Commanded Destabilization (CG from 51% to 56% at 6s)

The Real Thing!!LoFLYTE[®] at Edwards AFB

Electric Vehicle Control

HEV Performance

Why Not Launch a UAV from a USV?

Off with His Head!!

