Power Integrity and its Impact on Clock Jitter

Jason Ruffing Rohde and Schwarz 11/8/2018

Agenda

- Introduction: power rail noise and conversion to jitter
- Sampling theory and its application to jitter measurement
- Jitter measurement using an oscilloscope (TIE and period)
- Analyzing jitter in the frequency domain
- Correlating power rail ripple voltage with timing jitter
- Measurement example

Power Integrity and Clock Jitter

Power Integrity is a Leading Cause of System Jitter

Power supply noise causes clock/data jitter.

Power rails can carry other coupled sources

Spectrum Analysis of Ripple Voltage

Power Rail Measurement Challenges Lower rail voltages and smaller tolerances

DC Rail

Power Integrity Measurements: Primary Challenge

Power Rail Probes...specialty tool

Circular saw Great for a bunch of stuff. Can't cut door jambs.

Jamb saw. Does one task really well. Not useful for anything else.

Measurement Accuracy: Noise Due to Probe Attenuation Ratio

Challenges with Insufficient Scope Offset

AC coupling mode and blocking caps eliminate ability to see DC changes

Measurement Accuracy: High BW Needed for High Frequency Transients

Captures high-frequency transients

Measurement techniques for jitter in the time domain (oscilloscope) Sampling of a signal

The A/D Converter of the oscilloscope samples the continuous signal at specific points in time and delivers digital values

Waveform

Samples

- Sampling of clock signals at <u>zero-crossing</u> (no phase at high or low)
- ADC sample rate: $f_{ADC} = 1/T_I$
- The result is a waveform record that contains waveform samples
- The waveform samples were displayed at the screen and build up the waveform

Measurement techniques for jitter in the time domain (oscilloscope) Sampling of a signal

- Integrated low-pass filter (bandwidth < $0.5 f_{sa}$) in the analog front end \rightarrow Nyquist theorem is conformed
- Sampling of a signal
 - Original spectrum:

Spectrum after sampling:

 \rightarrow Frequency spectrum is copied at multiplies of the sample rate

Measurement techniques for jitter in the time domain (oscilloscope) Interpolation

- E.g.: 4:1 Interpolation $\rightarrow f_{sa}' = 4f_{sa}$
- Rectangular low-pass filter \triangleq Sin(x)/x interpolation
 - Attenuates the undesired spectral images

Resulting spectrum:

Measurement techniques for jitter in the time domain (oscilloscope) TIE measurement

- TIE works for data and clock signals
- CDR/PLL is typically required to generate the t_{REF,n} values
 - CDR (clock data recovery) or PLL
 - Recovery of TX clock
 - TX clock may be modulated (PCIe SSC)
- By recovering the TX clock, the TIE analyzes the impact of transmission

Measurement techniques for jitter in the time domain (oscilloscope) Software Clock Data Recovery (CDR)

- CDR generates a reference clock from a high-speed serial data stream
- The generated clock signal matches the frequency and is aligned to the phase of the data stream

Measurement techniques for jitter in the time domain (oscilloscope) Statistics

- Standard deviation, Mean value, Max, Min, Peak-peak...
- Population:
 - Number of individual observations included in the statistical data set (= event count)
 - Important to "judge" random processes

		Meas Results						
	Current	+Peak	-Peak	mu (Avg)	RMS	StdDev	Event count	Wave count
Meas 1 👊								
Period	30.7 ns	31.031 ns	29.044 ns	30.001 ns	30.008 ns	637.43 ps	4541	4541
Statistics:	Reset							

Measurement techniques for jitter in the time domain (oscilloscope) Combined measurement

■ 3 ways of viewing jitter results: track; histogram; spectrum

Jitter Time Trend (track)

Measurement techniques for jitter in the time domain (oscilloscope) Sampling of jitter

Original spectrum

Measurement frequency response (JTF)

TIE measurement with 1 MHz PLL

ROHDE&SCHWARZ

Spectrum Analysis of Jitter and Power Rail

Spectrum Analysis of Jitter and Power Rail

Comparison of power rail ripple and jitter

Effect of power rail noise on Jitter

Summary

- Voltage ripple on power rails is converted to jitter via the slew rate of clock and data signals
 - Even small ripple voltage can result in significant jitter
 - PSRR will reduce this effect in clock circuits but high frequencies are often passed through
- Specialized power rail probes are ideal for accurate noise measurement
 - Large offset range with 1:1 attenuation
 - Wide bandwidth
 - Low loading
- Spectrum analysis is a powerful tool for analyzing sources of noise and jitter
 - FFT of the Jitter time trend (track) shows frequency content of jitter
 - FFT of voltage ripple displays corresponding spectrum for the power rail
 - Increased voltage noise leads to increased jitter

