Topic 4

Practical Magnetic Design: Inductors and Coupled Inductors

Louis Diana

Agenda

• Theory of operation and design equations

- Design flow diagram discussion
- Inductance calculations
- Ampere's law for magnetizing force
- Faraday's law for flux density
- BH curves and magnetic saturation
- Core loss
- AC and DC wire losses
- Effective permeability and inductance rolloff
- Coupled-inductor winding layers and considerations

• Example – flyback-coupled inductor design using EFD core

Design Flow

Magnetic Parameters and Conversion Factors

		SI	CGS	CGS to SI
Flux Density	В	Tesla	Gauss	10-4
Field Intensity	Н	A-T/m	Oersted	1,000/4π
Permeability	μ	4 π x10 ⁻⁷	1	4 π x10 ⁻⁷
Area	Ae	m²	cm²	10-4
Length	lg, le	m	cm	10 ⁻²

Inductance

The inductance, L, of a wound core can be calculated from the core geometry using the following equation:

$$L = \frac{0.4 \times \pi \times N^2 \times Ae \times 10^{-8}}{lg + \frac{le}{\mu}}$$

$$\label{eq:magnetic} \begin{split} \mu &= \text{Core permeablity} \\ N &= \text{Number of turns} \\ Ae &= \text{Core cross-section (mm^2)} \\ le &= \text{Core magnetic path length (mm)} \\ lg &= \text{Gap (mm)} \end{split}$$

Manufacturers list inductance for a given core and gap as inductance per turn squared, referred to as Al.

$$L = Al \times N^2$$
 For Al in nH/per turn²

Core Geometry

Mean magnetic path length (*l*e) and effective area (Ae) are given in most data sheets, but *l*e can also be calculated using the following equation:

Ampere's Law

Ampere's law states that the total magnetic force along a closed path is proportional to the ampere-turns in the winding that the path passes through.

SI:
$$F = \oint H \times dl = N \times I \approx H \times le$$

 $H \approx \frac{N \times I}{le}$ ampere-turns/meter(A-T/m)

CGS: F =
$$\oint H \times dl = 0.4 \times \pi \times N \times I \approx H \times le$$

H $\approx \frac{0.4 \times \pi \times N \times I}{le}$ (Oersteds)

H = Magnetizing force

N = Number of turns

le = Core magnetic path length (m for SI, cm for CGS)

I = Peak magnetizing current (amperes)

Faraday's Law

The total magnetic flux Φ passing through a surface of area Ae is related to the flux density β .

SI:
$$\Delta \Phi = \frac{1}{N} \int E \times dt$$

$$E = N \times \frac{d\Phi}{dt} \approx N \times Ae \times \frac{d\beta}{dt} \Rightarrow \beta = \frac{\int E \times dt}{N \times Ae}$$

$$\beta = \text{Flux density (Tesla)}$$

CGS:
$$\Delta \Phi = \frac{10^8}{N} \int E \times dt$$

$$E = \frac{N}{10^8} \times \frac{d\Phi}{dt} \approx \frac{N \times Ae \times d\beta}{10^8 \times dt} \Rightarrow \beta = \frac{\int E \times dt \times 10^8}{N \times Ae}$$

$$\beta = \text{Flux density (Gauss)} \qquad E = \text{Voltage across coil (V)}$$

$$Ae = \text{Effective core area (m^2)}$$

BH Curves

Core Loss

For a Ferroxcube core:

 $\beta acpeak = \frac{\beta ac}{2}$

Convert Ve from mm³ to m³

$$Ve(m^{3}) = \frac{Ve}{1,000^{3}}$$

Peoreloss = Pv(KW/m^{3})×Ve(m^{3})

Specific power loss as a function of one-half of peak-to-peak flux density with frequency as a parameter.

Courtesy of Ferroxcube

Permeability and Inductance Rolloff

As current is increased in a magnetic and the flux density gets closer to core saturation, the permeability of the core starts to roll off.

Courtesy of Ferroxcube

AC–DC Wire Loss

Determine wire area and AC losses:

Number of wires required =
$$\frac{\text{Wire area required}}{\frac{\text{Area of wire chosen}}{\text{Ratio of AC to DC losses}}}$$

Total winding resistance = AC-DC wire resistance of selected wire \times Number of turns $\times \frac{\text{Length per turn}}{\text{Number of wires used}}$

AC–DC Wire Loss

Using look-up tables from the "Magnetics Design Handbook (MAG100A)" by Llyod H. Dixon:

Determine the wire area in cm^2 and the radius in cm

Annular inner ring (cm²) = $\pi \times \{ \text{radius of wire}^2 - [\text{wire radius}(\text{cm}) - \text{skin depth}(\text{cm})]^2 \}$

Ratio Rac to Rdc (Rskin) = $\frac{\text{Area of wire in (cm}^2)}{\text{Annular inner ring (cm}^2)}$

AC-DC wire resistance = DC resistance of chosen wire \times Ratio Rac to Rdc (Rskin)

Proximity Effects

AC current in a conductor induces eddy currents in adjacent conductors by a process called the proximity effect.

Power loss Pm in layer m is:

$$\mathbf{Pm} = \mathbf{I}^{2} \stackrel{\acute{e}}{\underline{e}} \left(m - 1 \right)^{2} + m^{2} \stackrel{\grave{u}}{\underline{u}} \stackrel{\acute{e}}{\underline{c}} \frac{\text{wire}_{dia}}{\mathcal{O}} \stackrel{\acute{e}}{\underline{c}} \mathbf{Rdc}_{\overset{\acute{e}}{\underline{c}}}^{\overset{\acute{e}}{\underline{o}}}$$

Winding Factor and Bobbin Fit Calculations

Winding data and area product for EFD20/10/7 coil former with 10-solder pads

Number of Sections	Winding Area (mm²)	Minimum Winding Width (mm)	Average Length of Turn (mm)	Area Product Ae x Aw (mm⁴)	Type Number
1	27.7	13.5	34.1	859	CPHS-EFD20-1S-10P

Courtesy of Ferroxcube

Winding factor for a bobbin should be in the .3 to .7 range depending on isolation requirements

Turns per layer = $\frac{\text{Bobbin width (mm)}}{\text{Diameter of wire in (mm)}}$ -2

Build up = $\frac{\text{Winding area in (mm)}}{\text{Winding width in (mm)}}$

Number of avaliable layers = $\frac{Buildup}{Diameter of chosen wire}$ Total bobbin turns = Turns per layer × Number of layers Winding fill factor = $\frac{Turns needed}{Total bobbin turns avaliable}$

Dimmensions in mm

Transformer Layers

Transformer layout is very important because it affects primary to secondary coupling and leakage inductance.

Fourth layer: 32awg single filar half of primary.

Third layer: 32awg trifilar.

Second layer: 32awg trifilar.

First layer: 32awg single filar half of primary.

Design Flow Summary

- Complete specification
- Pick a core (see section 4, "Power Transformer Design" by Lloyd H. Dixon)
- Calculate inductance and turns-based *Al*
- Calculate copper loss
- Calculate flux density and core loss
- Calculate temperature rise (see "Constructing Your Power Supply Layout Considerations" by Robert Kollman)
- Iterate as required to get the turns to layer nicely on the core for good coupling and low leakage inductance

Specifications required:

General		
Тороlоду	Quasi-Resonant Flyback	
Main Output Power	10 W	
Maximum Switching Frequency at Full Load	140 kHz	
Input		
Minimum Input Voltage	85 VAC, 76 VDC	
Maximum Input Voltage	265 VAC, 375 VDC	
Primary Peak Current	1.155 A	
Primary RMS Current	0.425 A	
Outputs		
Secondary Output Voltage	5 V	
Secondary Peak Current	13.861 A	
Secondary RMS Current	5.382 A	
Bias Voltage	16 V	
Bias Current	50 mA	
Inductance and Turns Ratio		
Primary Inductance	190.918 µH	
Leakage Inductance	3.818 µH	
Primary-to-Secondary Turns Ratio	12	

- Core selection is based on
 - Core size
 - Core material
 - Core gap

See section 5 in "Magnetics Design Handbook" by Lloyd H. Dixon (MAG100A)

- An EFD20 core with 3F3 material was chosen
 - Al was set to 82 nH
 - Key core and bobbin data

Winding Area (mm ²⁾	Min. Winding Width (mm)	Length per Turn (mm)	Area Product (mm ⁴⁾	Buildup (mm)	Effective Volume (mm ³⁾
27.7	13.5	34.1	859	2.052	1460

 Calculate primary turns, Np, based on required inductance and Al value

$$Np = \left(\frac{Lp}{Al}\right)^{1/2} \qquad Lp = 190.918 \ \mu H$$
$$Al = 82 \ nH$$

$$Np = 48$$

Calculate secondary turns-based turns ratio

$$Ns = \frac{Np}{Turns ratio} Turns ratio = 12$$

Ns = 4

Determine required primary wire area based on current density, J

Primary wire area = $\frac{\text{Ipri}_{max}}{I}$

 $J = 400 \text{ A/cm}^2$ $Ipri_max = 0.425 \text{ A}$

Primary wire area = $1.0625 \times 10^{-3} \text{ cm}^2$

• Determine skin depth at 100 C

 $\delta(\text{skin depth cm}) \approx \frac{7.6}{\sqrt{f}}$ f = 140 kHz

Skin depth = 0.0203 cm

Calculate annular ring area

Annular inner ring $(cm^2) = \pi \times \{ radius of wire^2 - [wire radius (cm) - skin depth (cm)]^2 \}$

- If skin depth is greater than wire radius annular ring area = wire area
- Calculate AC to DC resistance, Rac/Rdc ratio Ratio Rac to Rdc (Rskin) = $\frac{\text{Area of wire in (cm}^2)}{\text{Annular inner ring (cm}^2)}$

AWG	Cu Radius (cm)	Cu Area (cm²)	Annular Ring Area (cm ²)	Rac/Rdc Rskin
24	0.0255	0.002047	0.001958	1.0453
26	0.02	0.001287	0.001287	1.0000
28	0.016	0.00081	0.000810	1.0000
30	0.0125	0.000509	0.000509	1.0000

 Calculate number of wires required based on wire area, current density and Rac/Rdc ratio

Numbers of wires required = $\frac{\text{Wire area required}}{\text{Area of wire chosen}}$ Ratio of AC to DC losses

AWG	Wire Area Required (cm ²)	Cu Area (cm²)	Rac/Rdc Rskin	Number of Wires Required
24	0.0010625	0.002047	1.0453	1
26	0.0010625	0.001287	1.0000	1
28	0.0010625	0.00081	1.0000	2
30	0.0010625	0.000509	1.0000	3
32	0.0010625	0.00032	1.0000	4

- Look at how the windings might fit in the bobbin window
 - Initially estimate that half the area is used by the primary

Turns per layer = <u>Bobbin width (mm)</u>

Diameter of wire (mm)

Number of available layers = $\frac{\text{Buildup}}{\text{Diameter of chosen wire}} - 2$

 $Buildup = \frac{Winding area in (mm)}{Winding width in (mm)}$

	AWG	Insulated Diameter (cm)	Min. Winding Width (mm)	Turns per Layer	Available Layers	Number of Wires Required	
	24	0.057	13.5	21	3	1	
<	26	0.046	13.5	27	4	1	\square
	28	0.037	13.5	34	5	2	
	30	0.03	13.5	43	6	3	
	32	0.024	13.5	54	8	4	

Estimate primary winding copper losses

 One wire of wire gauge 26 was chosen

SYMBOL	PARAMETER	VALUE	UNIT
Σ(I/A)	core factor (C1)	1.52	mm ⁻¹
Ve	effective volume	1460	mm ³
le	effective length	47.0	mm
Ae	effective area	31.0	mm ²
A _{min}	minimum area	29	mm ²
m	mass of core half	≈ 3.5	g

Effective core parameters (courtesy of Ferroxcube).

$$Length_per_turn_cm = \frac{34.1 \text{ mm}}{10}$$

 $Length_per_turn_cm = 3.41 cm$

 $Rcu_pri_26awg = Rcu26_{100}^{\circ}C \times Np \times \frac{Length \text{ per turn}}{Number \text{ of primary wires}}$

 $Rcu_{pri}_{26awg} = 0.293 \Omega$

 $Pcu_pri_loss_26awg = Ipri_rms^2 \times Rcu_pri_26awg$

 $Pcu_pri_loss_26awg = 0.053 W$

Determine secondary wire AWG and losses: Ns = 4

Secondary wire area =
$$\frac{\text{Isecondary}}{\text{J}}$$
 = 14 × 10⁻³ cm² where J = 400 A/cm²
Number_of_wires_sec_28awg = $\frac{\text{Area_req_sec_cm}^2}{\frac{\text{Area_28awg_cm}^2}{\text{Rskin_28awg_100^{\circ}C}}}$ Number_of_wires_sec_28awg = 16.667

Number_of_wires_sec_28awg_used = 5 Rcu_sec_28awg = Rcu28_100°C × Ns × $\frac{\text{Length per turn}}{\text{Number of secondary wires}}$

 $Rcu_sec_28awg = 7.761 \times 10^{-3}$

 $Pcu_sec_loss_28awg = Isec_rms^2 \times Rcu_sec_28awg$

 $Pcu_sec_loss_28awg = 0.226 W$

Determine bias wire AWG and losses:

Number of bias wires = 1 Nbs = 13

 $Rcu_bias_32awg = Rcu32_100^{\circ}C \times Nsb \times \frac{Length \text{ per turn}}{Number \text{ of bias wires}}$

Rcu_bias_32awg = 225×10^{-3}

 $Pcu_bias_loss_32awg = Ibias_rms^2 \times Rcu_bias_32awg$

Pcu_bias_loss_32awg = 4.197×10^{-4} W

Determine core flux density:

Ae = 31 mm^2 Np = 48 Ipri_p = 1.155 A tonmax = 2.9 μ s

$$Bmax = \frac{Lp \times lprl_p}{Ae \times Np}$$

Bmax = 148.19 mT

Courtesy of Ferroxcube

Texas Instruments – 2012 Power Supply Design Seminar

Flyback-Coupled Inductor Example

Determine core loss:

$$Bunipolar = \frac{Bac}{2}$$

$$Bunipolar_mt = 74.1 \text{ mT}$$
From graph Pcore = 60 kW/m³
Ve = 1460 mm³ Ve_per_m³ = \frac{Ve}{1,000^3}
$$Pcore_loss = Pcore \times Ve_per_m3 = Courtes of Ferroxcube Courtes o$$

MBW048 3F3

 \hat{B} (mT) 10^3

Magnetic power dissipation:

 $Pcu_loss_tot = Pcu_pri_loss + Pcu_sec_loss + Pcu_bias_loss$

 $Ptot_mag = Pcu_loss_tot + Pcore_loss Ptot_mag = 0.367 W$

Determine bobbin fit factor:

AWG	Copper Diameter in cm with Insulation	Copper Area in cm ² with Insulation
26	0.046	0.001671
28	0.037	0.001083
30	0.03	0.000704
32	0.024	0.000459

 $bobbin_width_mm = 13.5 mm bobbin_wdth_cm = bobbin_width_mm \times .1$

bobbin_width_cm = 1.35 cm

Determine bobbin fit factor continued:

Turns_per_layer26 = $\frac{\text{bobbin}_width_cm}{\text{dia} 26awg_Inso_cm} - 2$ Turns_per_layer26 ≈ 27 Turns_per_layer28 ≈ 34 Turns_per_layer30 \approx 43 Winding_area_mm = 27.7 mm^2 Winding_area_cm² = .277 $Build_up_cm = \frac{winding_area_cm^2}{bobbin_width_cm}$ Build up = .205 cm $Layers = \frac{Build_up_cm}{dia \ 26awg \ Inso \ cm}$ Layers ≈ 4 Total bobbin turns 26awg = Turns per layer \times Layers Total bobbin turns 26awg = 108 $Turns_needed = Np \times number_of_wires_pri + Ns \times number_of_wires_sec +$ Nsb×number of wires bias Turns needed = 81Winding_factor = $\frac{\text{Turns_needed}}{\text{Total bobbin turns 26awg}}$ Winding_factor = .75

Coupled inductor layout:

First layer: 24 turns of 26awg single filar half of primary

Second layer: 20 turns of 28awg five filar secondary plus 13 turns of 30awg bias winding

Third layer: 24 turns of 26awg single filar half of primary

Summary

- Discussed theory of operation and design flow
- Determined inductance, flux density, core loss, AC and DC wire losses
- Discussed BH curves and magnetic saturation, effective permeability and inductance rolloff
- Discussed transformer winding layers and how to interleave the winding for good coupling and low leakage
- Went through an example of a flyback-coupled inductor design using EFD core