
REFACTORING
LabVIEW CODE

Terry Stratoudakis, PE
Certified LabVIEW Developer
Certified Professional Instructor

ALE System Integration
Melville, New York
December11, 2008

I. What is Refactoring?

II. Causes of ‘Bad Code’

III. When to Refactor Code

Overview

III. When to Refactor Code

IV. Refactoring Guidelines

V. Block Diagram Cleanup

VI. VI Analyzer Toolkit

VII. References

Anyone can write code that a

computer can understand.

Good programmers write code that Good programmers write code that

humans can understand.

Refactoring: Improving the Design of Existing Code

Code Changes

– Increase readability and maintainability
– Observable behavior remains the same

Has been around for years

What is Refactoring?

Has been around for years

not LabVIEW specific

A hard sell to Management

Also referred to as “cleaning up code”

Refactoring is not code optimization

I. Novice programmer

II. Rushed development

III. Prototype became final application

Causes of ‘Bad Code’

III. Prototype became final application

IV. Experimenting of new algorithms or

design patterns

I. Adding a feature to a VI

II. Debugging a VI

When to Refactor Code

III. There is value in a VI that functions

IV. Plans to make VI part of reuse library

I. VIs do not function

II. VIs satisfy small portion of your needs

III. VI needs re-architecting

When to Rewrite VIs

III. VI needs re-architecting

I. Can use sub-VIs

I. Review code and understand it well

II. Create Test Plan

III. Keep backups or use source code control

Refactoring Guidelines

III. Keep backups or use source code control

IV. Keep changes simple

V. Test often

I. Review documentation

II. Meet with original developers

III. Meet with operators

Review & Understand Code

III. Meet with operators

IV. Review code

V. Make your own notes, flow charts

VI. Run code

I. Refactoring emphasizes testing

II. Ensures that other parts do not “break”

III. Could use test driven development

Create Test Plan

III. Could use test driven development

a. Make VIs that ‘test’ the refactored VIs

I. Allows you to undo changes

II. Source Code Control is preferred

Examples: SourceSafe, CVS, SVN, Perforce

Keep Backups

Examples: SourceSafe, CVS, SVN, Perforce

III. Can zip source folder and store

I. Make cosmetic improvements first

II. Enter notes directly into VIs

III. Allows you to get more familiar with code

Keep Changes Simple

III. Allows you to get more familiar with code

IV. Deep changes may break code

I. Minimal time loss when undoing changes

II. Changes may expose existing race

conditions

Test Often

conditions

III. Have operator run program

I. Very fast clean up of VI

II. Better for lower-level VIs

III. May obfuscate VIs with Design Pattern

Block Diagram Clean-up (LabVIEW 8.6 only)

III. May obfuscate VIs with Design Pattern

IV. Can tweak parameters
Tools>>Options Block Diagram: Cleanup

V. Cannot cleanup partial Block Diagram

VI. Can undo

I. Very fast clean up of VI

II. Better for lower-level VIs

III. May obfuscate VIs with Design Pattern

Block Diagram Clean-up (LabVIEW 8.6 only)

III. May obfuscate VIs with Design Pattern

IV. Can tweak parameters
Tools>>Options Block Diagram: Cleanup

V. Cannot cleanup partial Block Diagram

VI. Can undo

I. Automated application code review

II. Over 60 included tests

III. Customize tests for individual applications

VI Analyzer Toolkit

IV. Programmatically configure and run tests

V. Report generation for documentation and for

tracking progress of code quality

VI. Included in Developer Suite

References
� Refactoring: Improving the Design of Existing Code

by Martin Fowler, Kent Beck, John Brant, William Opdyke, Don Roberts

Publisher: Addison-Wesley Professional (July 8, 1999)

Language: English

ISBN-10: 0201485672

ISBN-13: 978-0201485677

� Wikipedia – Code refactoring

http://en.wikipedia.org/wiki/Code_refactoring

� Eyes on VIs Blog

http://eyesonvis.blogspot.com/2008/08/automatic-block-diagram-clean-up-one-of.html

� ALE System Integration website:
http://www.aleconsultants.com

� NI Week 2007 and 2008 Presentations on Refactoring

� National Instruments Website

http://www.ni.com

ALE SYSTEM INTEGRATION
http://www.aleconsultants.com – info@aleconsultants.com

� LabVIEW, LabWindows/CVI, TestStand, Visual Studio

� Customers: Test Labs, Manufacturers, Mil/Aero, Finance

� Based in Long Island, New York – projects nationwide� Based in Long Island, New York – projects nationwide

� National Instruments Certified Alliance Partner

� Over 10 Years Test & Automation experience

� Expertise in variety of instrument manufacturers’ products

� All developers have National Instruments Certification

Terry Stratoudakis, P.E.

� B.S. and M.S. in Electrical Engineering, Polytechnic University

� NI Certified LabVIEW Developer and Certified Prof. Instructor

� New York State licensed Professional Engineer

� Former Assistant Adj. Prof. at NYC College of Technology� Former Assistant Adj. Prof. at NYC College of Technology

� Co-founder and President of ALE System Integration

� Worked at Underwriters Laboratories for six years

� Test & Control, OPC, DAQ, GPIB instrument control, sound &

vibration analysis,, FPGA programming, and project management

� Member of the IEEE-Long Island Consultants Network

