New Configurations for RF/Microwave Filters

Presented by:

Jeremy Fejfar

Applications Engineer

CST of America, Inc.

Outline

- Introduction
- Conventional Filter Theory
- Need for Folded Transmission Lines
- Single-level Folded line Bandstop and Lowpass Filters
- Multi-level Folded line Bandstop and Lowpass Filters
- Advantages of Folded Line Filters
- Conclusions

Introduction

- The explosive growth in miniature wireless communication hardware drives the need for miniaturization
- Increasing role of embedded passives
- Off-chip and On-chip applications
- Novel filter configurations desired
- Focus on Bandstop and Lowpass filters

Typical Receiver Architecture

Antenna

Conventional Design Methodology: Limiting Factors

- < 1 GHz Typically Lumped Configurations
- > 10 GHz Typically Distributed Configurations
- Lower RF, microwave frequencies (1-10 GHz)
- Large component footprints
- ♦ Stub loaded filters → extremely narrow or wide line
 widths → impractical for physical implementation

Folded Filter Methodology

- Folding the transmission lines yields a more compact footprint
- Common design methodology for both bandstop and lowpass filters
- Conventional filter theory still applicable in the first phase of the design

Folded Line Examples

Network Representation for Single Level Folded Line Filters

• 2N×2N port network

 $\begin{bmatrix} Y \end{bmatrix} = \begin{bmatrix} Y_A & Y_B \\ Y_B & Y_A \end{bmatrix}$

 $[Y_{A}] = [M_{v}]^{T} [\operatorname{coth}(\gamma_{k}l)]_{diag} [Y_{k}]_{diag} [M_{v}]^{-1}$

$$\begin{bmatrix} Y_B \end{bmatrix} = \begin{bmatrix} M_v \end{bmatrix}^T \begin{bmatrix} \operatorname{csch}(\gamma_k l) \end{bmatrix}_{diag} \begin{bmatrix} Y_k \end{bmatrix}_{diag} \begin{bmatrix} M_v \end{bmatrix}^{-1}$$
$$\begin{bmatrix} Y_k \end{bmatrix} \approx \begin{bmatrix} M_v \end{bmatrix}^{-1} \begin{bmatrix} Y_{SH} \end{bmatrix} \begin{bmatrix} M_v \end{bmatrix}$$

 $[Y_{SH}] = [G] + j\omega[C]; [Z_S] = [R] + j\omega[L]$

V₁ Sub N.W Sub N.W Sub transmission lines S_{2Nx2N} Sub N.W Sub N.W Sub N.W

Reduced 2-port scattering matrix

Folded Line Filter Section

Filter Design Procedure

Single Level Folded Line Bandstop Filters (Example #1)

- Initial design of stubloaded bandstop filter
- Specifications
- > N=3, f₀=1.5 GHz
- Maximally flat amplitude response (Butterworth)
- > ∆=0.2 & 0.3
- Microstrip realization
 ε_r=2.2, h=31mil

• Design equations for N=3

$$\begin{split} &Z_1 = Z_A (1 + 1/\Lambda g_0 g_1) \ Z_{12} = Z_A (1 + \Lambda g_0 g_1) \\ &Z_2 = Z_A g_0 / \Lambda g_2 \qquad Z_3 = Z_A g_0 / g_4 (1 + 1/\Lambda g_3 g_4) \\ &Z_{23} = Z_A g_0 / g_4 (1 + \Lambda g_3 g_4) \\ &Z_A \text{ and } Z_B = \text{ terminating impedances} \\ &Z_j \ (j = 1 \text{ to } n) = \text{OC shunt stub impedances} \\ &Z_{1j} \ (j = 2 \text{ to } n) = \text{connecting line impedances} \\ &g_j = \text{ prototype element values} \end{split}$$

$$\Lambda = \omega_0 a, \quad a = \cot(\frac{\pi}{2} \ \frac{\omega_1}{\omega_0})$$
$$\Delta = \frac{\omega_2 - \omega_1}{\omega_0}, \quad \omega_0 = \frac{\omega_1 + \omega_2}{2}$$

 ω_1 and $\omega_2 =$ bandstop edge frequencies

Characteristic Impedances for Various Bandstop Filter Sections

Δ	Ζ _Α (Ω)	Z ₁ (Ω)	Z ₁₂ (Ω)	Ζ ₂ (Ω)	Z ₂₃ (Ω)	Ζ ₃ (Ω)	Ζ _B (Ω)
0.3	50	258	62	104	62	258	50
0.2	50	365.7	57.9	157.8	57.9	365.7	50

N=3, Maximally flat response , f_0 =1.5 GHz

50Ω microstrip line \rightarrow w = 98 mil

365.7 Ω microstrip line \rightarrow w = 0.1 mil

258 Ω microstrip line \rightarrow w = 1 mil

(1/2 ounce copper, 0.7 mil)

Design Flow for the Folded Line Bandstop Filters (Single-Level)

Bandstop Filter Comparison (Δ = 0.2)

- Microstrip realization
- $\geq \epsilon_r$ =2.2, h=31mil
- Conventional stub-loaded filter measured 2948 sq mm
- Folded line filter measured 767 sq mm !!
- Please note the 'aspect ratio' for conventional -> printing artifact ->line widths are too small to be shown accurately

Footprint & Critical Conductor Width Comparison

Δ=0.2	Conventional Bandstop	Folded line Bandstop	
Smallest normalized width (w/h)	0.0032 (0.099 mil)	0.26 (8.06 mil)	
Overall footprint	2948 sq mm	767 sq mm	
Footprint comparison	100 %	26 %	

Filter Response

- \square S₁₁(Conventional filter theoretical) \square S₂₁(Conventional filter theoretical)
- S₁₁(Folded filter theoretical)
- S₁₁(Folded filter MWS 2006®)
- S₂₁(Folded filter theoretical)
- S₂₁(Folded filter MWS 2006®)

Bandstop Filter Comparison (Δ = 0.3)

- Microstrip realization
- $\geq \epsilon_r$ =2.2, h=31mil
- Conventional stub-loaded filter measured 2948 sq mm
- Folded line filter measured 1015 sq mm !!
- Please note the 'aspect ratio' for conventional -> printing artifact ->line widths are too small to be shown accurately_{cst}

Footprint & Critical Conductor Width Comparison

Δ=0.3	Conventional Bandstop	Folded line Bandstop	
Smallest normalized width (w/h)	0.032 (0.99 mil)	0.5 (15.5 mil)	
Overall footprint	2948 sq mm	1015 sq mm	
Footprint comparison	100 %	34 %	

Fabricated Folded Line Bandstop Filter

RT Duroid 5880

Folded Line Bandstop Filter Response

Folded Line Bandstop Filter Response (Cont'd)

Folded Line Bandstop Filter Response (Cont'd)

Re-entry characteristics similar to conventional filters but higher frequencies are shifted due to increased coupling.

Folded Line Bandstop Filter Response (Cont'd)

Re-entry characteristics similar to conventional filters but higher frequencies are shifted due to increased coupling.

Single Level Folded Line Lowpass Filters (Example #2)

- Initial design of stubloaded lowpass filter
- Specifications
- ≻ N=3, f_c=1.5 GHz
- Maximally flat response (Butterworth)
- Microstrip platform
- $\geq \epsilon_r$ =2.2, h=31mil

- Lumped-element prototype
- Richard's transformations
- Unit elements
- Kuroda's identities
- Impedance scaling
- Frequency scaling

 $Z_{\rm A}$ and $Z_{\rm B}~$ = Terminating impedances

 Z_j (j =1 to n) = OC shunt stub impedances

 $Z_{1j} \ (j \ = 2 \ to \ n)$ = Connecting line impedances

Characteristic Impedances for Various Lowpass Filter Sections

Z _A (Ω)	Z ₁ (Ω)	Z ₁₂ (Ω)	Z ₂ (Ω)	Z ₂₃ (Ω)	Z ₃ (Ω)	$Z_{B}(\Omega)$
50	100	100	25	100	100	50

N=3,Maximally flat response , f_c=1.5 GHz

50Ω microstrip line \rightarrow w = 98 mil

25 Ω microstrip line \rightarrow w =243 mil (6.17 mm)

(1/2 ounce copper, 0.7 mil)

Design Flow for the Folded Line Lowpass Filters (Single-Level)

Lowpass Filter Comparison

- Microstrip realization
- ε_r=2.2, h=31mil
- Conventional stub-loaded filter measured 755 sq mm
- Folded line filter measured 535 sq mm !!

Footprint & Critical Conductor Width Comparison

f _c =1.5 GHz	Conventional Lowpass	Folded line Lowpass	
Largest normalized width (w/h)	7.9 (244.9 mil)	3.63 (112.5 mil)	
Overall footprint	755 sq mm	535 sq mm	
Footprint comparison	100 %	71 %	

Fabricated Folded Line Lowpass Filter

Folded Line Lowpass Filter Response

Folded Line Lowpass Filter Response (Cont'd)

Importance of the Ground Plane (BTB Microstrip Realization)

- Isolates the top and bottom metallization layers
- More practical via dimensions
- Less prone to alignment errors

A Back-to-Back Microstrip Geometry

Network Representation for Multi Level Folded Line Filters

- 2N x 2N port networks
- Cascade of three separate networks
- Reduced 2-port scattering matrix

Composite Geometry

3D View

Overhead View

Via Model Extraction

Closed form design equations

L(w)= 0.5054*exp(-1.7014*w^{0.8846})+ 0.4298 nH

C(w)= 0.2209*exp(0.2564*w^{0.9555}) - 0.1918 pF

R(w)= -0.0026*exp(1.6083*w^{0.5072}) + 0.0911 Ω

Diameter of the via = $\frac{1}{2}$ width of the strip Diameter of the antipad = 0.4 mm + diameter of the via

Via R, L, C Vs. Line Width

Design Procedure for Multilevel Bandstop and Lowpass Filters

Multi Level Folded Line Bandstop Filters (Example #3)

- Initial design specifications of stub-loaded bandstop filter
- ➢ N=3, f₀=1.5 GHz
- Maximally flat response (Butterworth)
- ≻ ∆=0.3
- BTB microstrip realization
- $\geq \epsilon_r$ =2.2, h=31mil for both dielectric layers

- BTB microstrip platform
- > ϵ_r =2.2,h=31mil for both dielectric layers
- Conventional stub-loaded filter measured 2948 sq mm
- Folded line filter measured 532 sq mm !!

3D View of the Multilevel Folded Line Bandstop Filter

Ground plane and dielectrics are hidden for better visibility

Footprint & Critical Conductor Width Comparison

	Conventional	Single Level	Multi Level
Δ=0.3	Bandstop	Folded Line	Folded Line
		Bandstop	Bandstop
Smallest normalized width (w/h)	0.032 (0.99 mil)	0.5 (15.5 mil)	0.4 (12.4 mil)
Overall footprint	2948 sq mm	1015 sq mm	532 sq mm
Footprint comparison	100 %	34 %	18 %

Fabricated Folded Line Bandstop Filter

Top metallization layer

RT Duroid 5880

Bottom metallization layer

Folded Line Bandstop Filter Response

Folded Line Bandstop Filter Response (Cont'd)

Multi Level Folded Line Lowpass Filters (Example #4)

- Initial design specifications of stub-loaded lowpass filter
 N=3, f_c=1.5 GHz
- Maximally flat response (Butterworth)
- BTB microstrip platform
- > ϵ_r =2.2, h=31mil for both dielectric layers

- BTB microstrip realization
- $\geq \epsilon_r = 2.2$, h=31mil for both dielectric layers
- Conventional stub-loaded filter measured 755 sq mm
- Folded line filter measured 235 sq mm !!

3D View of the Multilevel Folded Line Lowpass Filter

Ground plane and dielectrics are hidden for better visibility

Footprint & Critical Conductor Width Comparison

f _c =1.5 GHz	Conventional Lowpass	Single Level Folded Line Lowpass	Multi Level Folded Line Lowpass
Largest normalized width (w/h)	7.9 (244.9 mil)	3.63 (112.5 mil)	3.21 (99.5 mil)
Overall footprint	755 sq mm	535 sq mm	235 sq mm
Footprint comparison	100 %	71 %	31 %

Fabricated Folded Line Lowpass Filter

Top metallization layer

Bottom metallization layer

BTB Microstrip Realization

RT Duroid 5880

www.cst.com • Sep-06

Folded Line Lowpass Filter Response

Folded Line Lowpass Filter Response (Cont'd)

Advantage Summary of Folded Topologies

- Uses a common design methodology for both bandstop and lowpass filters
- More compact footprints than conventional
- More feasible physical dimensions (i.e. aspect ratio) for a practical implementation
- Embedded ground plane aids in the design of multi level filters
- Equivalent electrical performance to that of the conventional filters
- Host of embedded passive and RFIC applications in the 1-10 GHz range

