

# Topic 1 Safety Considerations in Power Supply Design

#### **Bob Mammano** Lal Bahara, Underwriters Laboratories

REAL WORLD SIGNAL PROCESSING"



### Acknowledgment

- This topic presents a brief overview of a complex subject
- Prepared from information supplied by Underwriters Laboratories, Inc.
- More in-depth coverage is available from UL at: UL Customer Service Group E-mail: ULAnytime@ul.com Phone: 1-877-UL-HELPS in America

# **Principles of Safety**

As applicable to power supply design

#### Electric shock

- Perception, reaction, not-let-go, fibrillation
- Fire
  - Abnormal operating conditions, faults, overloads
- Energy hazard
  - Burns from low voltage but high VA (>240 VA)

#### Mechanical

- Sharp edges, moving parts (injury, insulation damage)
- Heat related hazards
  - High temperatures at accessible surfaces

# **Power Supply Considerations**

- Stand-alone or component supply
  - End product standards apply
  - End use determines applicable standards
  - End product evaluation is adequate for some applications
  - Conditions of acceptability known to user
- Accessibility
  - To user two levels of protection from hazardous voltages
  - To service personnel guard from inadvertent exposure

# **Safety Standards for Power Supplies**

- ◆ UL1310 for limited power (<60 V and <8 A)
- UL1012 for general use in the USA only
- ◆ IEC/EN/CSA/UL 60950-1 primary standard today
  - Information technology equipment and telecom
  - Nearly world-wide acceptance
  - Other standards
    - IEC/EN/UL 60065 for Audio and video
    - IEC/EN/UL 60601 for Medical equipment
    - IEC/EN/UL 61010 for Laboratory Supplies
    - etc.
- Future consideration
  - IEC 61204-7 Conformance to multiple standards

# **Typical Power Supply**



Different power supply types may have different or fewer blocks. i.e., battery backup, dc/dc converters

# **Use Certified Components**

Many are available to IEC/EN/CSA/UL standards:

- Power cords or input terminals
- Protective devices (fuses, etc.)
- EMI filters
- Power switch, wiring, PWB, chassis
- Isolators (transformers, optocouplers)
- Rectifier assemblies
- Output connector or terminals
- Cooling devices
- ♦ Etc.

### **Electric Shock Thresholds**

- ◆ 0.0 0.5 mA Perception, minimal reaction
- ◆ 0.5 3.5 mA Inadvertent reaction, can tolerate
- ♦ 3.5 10 mA Inability to let go
- ♦ 10 50 mA Fibrillation, cell damage
  - Threshold is 2 mA dc, 0.7 mA peak, 0.5 mA rms
  - Assumes body resistance of 2 kΩ at 110 V
    - Resistance decreases with increasing voltage
  - Higher frequencies less harmful
    - Multiply 50/60 Hz value by frequency in kHz
    - Maximum current is 70 mA at any frequency
    - Potential for burns if current density is high

### **Accessible Safe Voltages**

- LCC (Limited Current Circuit)
  - Current limited to 0.7 mA ac or 2.0 mA dc
    - Under both normal and single-fault conditions
    - Capacitance is limited
- SELV (Safety Extra Low Voltage)
  - Voltages less than 42.4 V peak ac or 60 V dc
    - Under both normal and single-fault conditions
- TNV (Telecommunication Network Voltage)
  - Contact area or duration must be limited
    - 71 V ac or 120 V dc, normal conditions at connector pin
    - Higher under single fault if duration < 200 ms
    - Subject to transients of shorter duration

## **Unsafe Circuits**

Protection from operator contact required:

#### Hazardous voltage circuits

- Voltage in excess of SELV or TNV limits, or if not LCC
- ELV (Extra Low Voltage)
  - Meeting SELV voltages but not safe under single fault
- Primary circuits
  - AC mains voltage (hazardous)
- Secondary circuits with voltage in excess of SELV limits
  - No direct connection to primary

#### **Insulation Categories**

- Functional Necessary for operation, no protection
- Basic Single level to provide shock protection
  - No thickness spec could have pinholes
- Supplementary Additional level added to Basic
  - Includes 0.4 mm min thickness spec for single layer
- ◆ Double Two levels, Basic plus Supplementary
- Reinforced Single system equivalent to Double
  - 0.4 mm min thickness

Note: Basic + Basic does not equal Double level

## **Insulating Requirements**



Hazardous Voltage

- ◆ One level if circuit is not accessible
- Two levels between accessible components and hazardous voltages
- Each level of insulation must meet appropriate standards - A single level may fail
- Double faults not considered
  - Except as a consequence of first fault
- One level could be protective earth (enclosure)

#### **Insulation Coordination**



# **Working Voltage**



- The highest voltage between any two conductive devices
- Can be peak, rms, or dc measured values
- Determines spacings and insulation thickness

#### **Insulation Materials**

- Can be solid insulation or air
- Each level rated for maximum voltage under singlefault conditions
- Insulating materials rated for operating environment
  - Must be non-hygroscopic
- Thickness/spacings defined by "Pollution Degree"
  - Degree 1 = sealed enclosure
  - Degree 2 = office environment
  - Degree 3 = potential conductive atmosphere

# **Distance Through Solid Insulation**

- ♦ Working Voltage < 71 V No Requirement</p>
- Above 71 V Functional and Basic have no requirement
- Supplementary and Reinforced 0.4 mm min thickness
- Semiconductors and Optocouplers No requirement if:
  - Insulating material is solid
  - Component passes qualification inspection
  - Tested for electric strength during manufacturing
  - External terminations must meet clearance and creepage unless coated

#### **Optocoupler Options**



- Terminations to PCB must meet Creepage specs
  - Surface mount pads can meet 8-mm spacing
  - Through-hole pads need special bend or slot

# **Spacing of Conductors**



## **Clearance Distances (in millimeters)**

| Working Voltage |       | AC N<br>(Trans<br>Pollutic | Mains < 1<br>sient to 18<br>on levels 7 | 50 V<br>500 V)<br>1 and 2 | AC Mains < 300 V<br>(Transient to 2500 V)<br>(Pollution levels 1 and 2) |     |     |  |
|-----------------|-------|----------------------------|-----------------------------------------|---------------------------|-------------------------------------------------------------------------|-----|-----|--|
| Peak dc V       | rms V | F                          | B/S                                     | R                         | F                                                                       | B/S | R   |  |
| 71              | 50    | 0.4                        | 1.0                                     | 2.0                       | 1.0                                                                     | 2.0 | 4.0 |  |
| 210             | 150   | 0.5                        | 1.0                                     | 2.0                       | 1.4                                                                     | 2.0 | 4.0 |  |
| 420             | 300   | 1.5                        | 2.0                                     | 4.0                       | 1.5                                                                     | 2.0 | 4.0 |  |
| 840             | 600   | 3.0                        | 3.2                                     | 6.4                       | 3.0                                                                     | 3.2 | 6.4 |  |

Partial data from UL60950-1, Section 2.10.3, Table 2H

# **Creepage Distances (in millimeters)**

| Working<br>Voltage | Pollution Level 1<br>Material Group III |     |     | Pollution Level 2<br>Material Group III |     |      | Pollution Level 3<br>Material Group III |     |     |
|--------------------|-----------------------------------------|-----|-----|-----------------------------------------|-----|------|-----------------------------------------|-----|-----|
| dc or rms          | F                                       | B/S | R   | F                                       | B/S | R    | F                                       | B/S | R   |
| < 50 V             | 0.4                                     | 0.7 | 1.4 | 1.2                                     | 1.2 | 2.4  | 1.9                                     | 1.9 | 3.8 |
| < 150 V            | 0.6                                     | 0.9 | 1.8 | 1.6                                     | 1.6 | 3.2  | 2.5                                     | 2.5 | 5.0 |
| < 300 V            | 1.6                                     | 1.9 | 3.8 | 3.2                                     | 3.2 | 6.4  | 5.0                                     | 5.0 | 10  |
| < 600 V            | 3.2                                     | 3.2 | 5.0 | 6.3                                     | 6.3 | 12.6 | 10                                      | 10  | 20  |

Partial data from UL60950-1, Section 2.10.4, Table 2L

#### **Transformer Construction**



- Creepage and Clearance usually identical
  - Creepage = Clearance = A + B
  - Air exists between all layers
  - Thickness of tape is assumed to be negligible
- Enamel wire coating not considered as insulation

# **Flame Testing**

- V-0 Rating = non-flammable, always acceptable
- V-1 Rating = Self extinguishing
- V-2 Rating = Flaming particles ignite cheesecloth
  - V-2 acceptable with solid-bottom enclosure only
- Selected components throughout supply opened or shorted, or output overloaded
- Wire insulation with plasticizers provides increased flexibility, but also add to flammability

# **Designing For Safety**

Understand requirement early in program

#### Materials

- Choose certified components where available
- Mechanical
  - Securely mounted components
  - No sharp edges or corners
  - No accessible moving parts
- PCB Layout
  - Define isolation boundary
  - Know working voltage levels
  - Anticipate shorted-component testing

### **Primary-Secondary Isolation**



- Isolation spacing clearly visible
- Slot under opto-coupler

# **Circuit Design for Fault Testing**



- High-voltage bias through R1 + R2
- R<sub>G</sub> and D1 protect against Q1 D-G short
  - Use fusible resistor for R<sub>G</sub>
  - Blown input fuse is OK

# **Safety Evaluation**

- Construction analysis
- Worst-case operational testing
- Internal working voltage limits
- Component heating tests
- Humidity
- Electric strength measurements
- Flame tests
- Additional specialized testing

# **Safety Certification**



- Five open and five enclosed units for testing
- ♦ Six to eight weeks

### **For Greater Depth**

- UL conducts one- and two-day seminars
- Check <u>http://www.ul.com/seminars</u>
- UL also provides design reviews and EMC testing
- Refer to UL60950-1