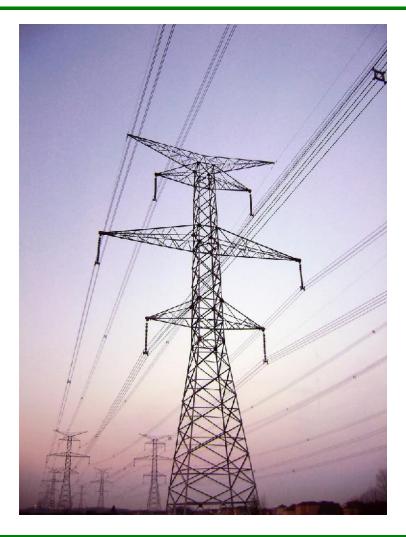
LONG ISLAND SYSTEMS, APPLICATIONS, AND TECHNOLOGY (LISAT) CONFERENCE 2013

Co-sponsored by IEEE PES/IAS Long Island

Smart Grid Framework & Solar PV


FARMINGDALE STATE COLLEGE APRIL 3, 2013

Gregory D. Sachs, PE

EmPowerSolar

(1) GRID = "Impossibly Complex" System

- Hundreds of thousands of users
- **D** Switches turning on & off
- Motors starting & stopping
 TRULY AMAZING THE THING
 ACTUALLY WORKS..!
- Few people take time to appreciate it..
- At every instant..SUPPLY = DEMAND
- As demand changes..
- As supply changes..

EmPower Solar

PV Interconnection: The "Big Picture"

(2) System Architecture – Paradigm Shift

COMMON SUPPLY

- Baseloading (Thermal)
- Peaking generator (Gas Turbine)
- Hydro

RENEWABLE/PERPETUAL SUPPLY

- Solar PV
- □ Wind
- □ Tidal/Wave
- Hydro
- Geothermal
- Biomass (solid, gaseous, muni-waste)
- Combined Heat & Power (Co-Generation)

NON-RESPONSIVE DEMAND

- Residential
- Commercial
- Industrial

MARKET RESPONSE DEMAND (Negawatts)

- Residential MR
- □ Commercial MR
- Industrial MR

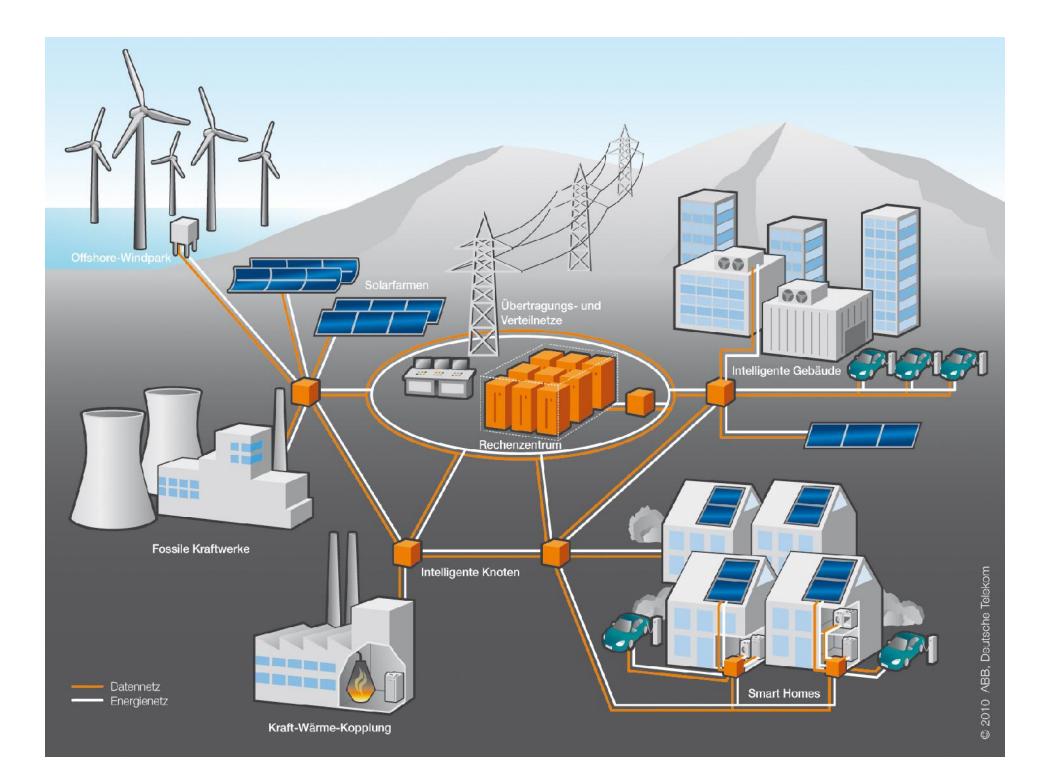
DISPATCHED DEMAND RESPONSE RESOURCE (Negawatts)

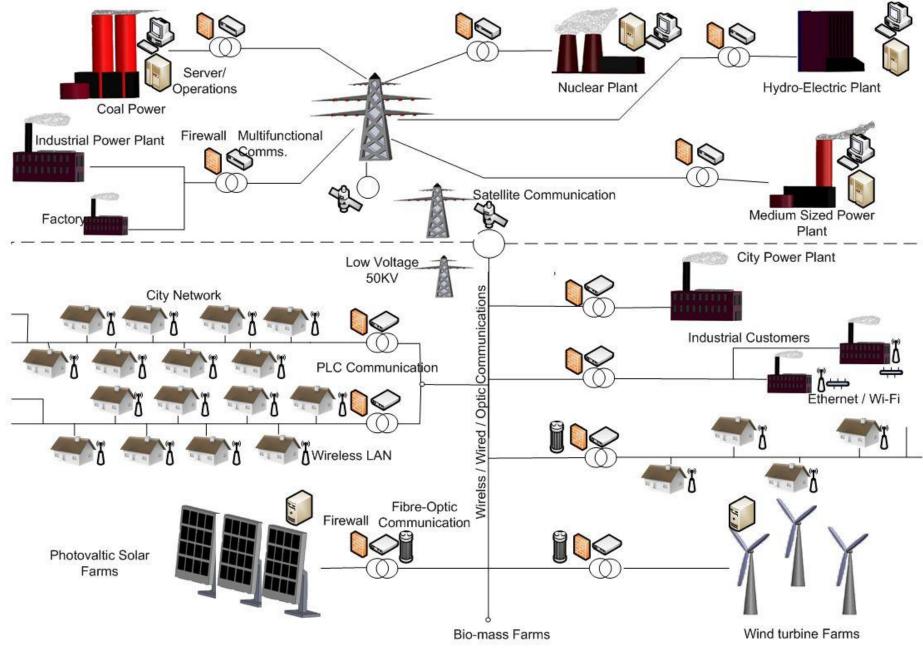
- Residential DR
- □ Commercial DR
- Industrial DR

BULK ENERGY STORAGE RESOURCES

- Pumped Hydro
- □ Compressed Air (surface & underground)
- Flow Batteries
- **D** Electric Vehicles, PHEV's

OPERATING / FREQUENCY RESERVES


- Inertia of spinning machines (Frequency Response Reserve)
- **D** Flywheels, super-capacitors, batteries
- "Spinning Reserve" (additional capacity of generators already on line)
- "Peakers", "Fast-start" generators, Batts, pumped hydro
- **D** Replacement Reserves..



(3) Grid Transformation, a 30 Year Plan

Timeframe	Phase Definition	Defined by (Key Characteristics)	Key Functions / Technologies	RE Penetration
0 - 10 Year Grid	1. Communications & Measurement	Laying the foundation for future technologies through communications. 'Tidying' up our usage.	 Energy efficiency Demand Response 	5% (by capacity)
10 - 20 Year Grid	2. Advanced Components & Dynamic Control	Physical Restructuring of the Grid. Overcoming initial supply & demand variability.	- Network Adaption & Reconfiguration - Islanding	15% (by capacity)
20 - 30 Year Grid	3. Large Scale Pervasive Renewables	Mass adoption of Renewable Energy resources enabled through Storage & fast supply &demand balancing control.	- Distributed Generation, Storage, Electric Vehicles	40+% (by energy)

And as if it wasn't complex enough already..!

(4) A Fundamentally New Mindset..

ECONOMIC POLICY —

-<mark>TECHNICAL POLICY</mark> 🗲

ECONOMIC

- Tariff Related
- FIT Rates
- REC's
- **D**ynamic-Pricing
- Demand Response Incentives

TECHNICAL

- Interconnection
- **D** Evaluation processes
- Control Requirements
- **D** Communication Rqmts.
- Metering

(5) Technical / Operational "Toolbox"

Sample Assets / Enabling Equipment	Function	Sample Assets / Enabling Equipment	Function
Fault Current Limiters (FCL's)	Fault Current Limiting	ault Current Limiting Control systems could determine when to operate these devices (Ie, generator voltage	
phasor measurement units (PMU's), data concentrators, and advanced software	Wide Area Monitoring, Visualization and Control	regulators), and do so automatically.	VAR Control
sensors, information processing and communications	Dynamic Capability Rating (AKA, Ampacity Determination)	SCADA systems including sensing / monitoring devices, communications networks and analysis software	Diagnosis & Notification of Equipment Condition
hase angle regulating Flow Control		High resolution sensors, algorithms detecting fault signatures, high speed	Enhanced Fault Protection
transformers (PARs) or Flexible AC Transmission System (FACTS) devices. Solutions are being explored using superconducting cables or very low impedance (VLI) cable with a phase angle regulator		digital communications and computing, line differential protection, adaptive relaying and System Integrity Protection systems (SIPS). Smart meters and appliance controllers,	Real-Time Load
Set points adjustment for the relays and switching devices would be done by algorithms running within software programs and systems.	Adaptive Protection (AKA, Adaptive Fault Protection)	Advanced Metering Infrastructure (AMI) systems (smart meters, two-way communications) and embedded appliance controllers, real-time price signals, time-of- use (TOU) rates, and service options	Measurement & Management Real-Time Load Transfer
sensors, controls, switches, and COMMUNICATIONS systems	Automated Feeder Switching (AKA, Automated Feeder Switch Actuation)	Control systems, actuating equipment, etc.	
Islanding is enabled through various sensors, controls, switches, and communications systems, <i>inverters</i> , controllers and distributed energy resources	Automated Islanding and Reconnection (AKA, Enabling "Islanding")	sensing and reporting equipment, interactive SOftWare , appliances which respond to signals, an on-line marketplace, etc	Customer Electricity Use Optimization

(6) Driving Factors Final Rqmts.

Regulatory / Policy Environs

- Inver Manufacturer Testing & Acceptance
- □ NYS-SIR, PSC
- UL & IEEE Standards
- Industry Precedent
- EPRI & other reputable reports

Physical System Conditions

- **D** Type of injection (IE. PV)
- Size (capacity) of installation
- Location of connection on feeder circuit
- Available fault current
- Type of equipment on feeder already (ie Substation, protection equipment, etc)

(6) Common Issues / Challenges

Operational Considerations

- Direct Transfer Trip (DTT)
- Supervisory Control & Data Acquisition (SCADA)
- "Leaselines" Alternative

Fault Analysis Clarifications

- Redundant Relaying
- **Grounding Transformers**
- High Voltage Excursions
- Redundant Relaying

Fees

- Application Fee
- Ongoing Operational
- Utility Upgrades
- **Transformer Purchases**

Process

- Screening process
- **D** Timeframes
- □ Staffing & Resources

(7) Thank You LIPA..

LIPA & Industry

- Power & Asset Mgt
- **D** Solar Pioneer/Entrepreneur
- □ LISEIA / IEEE
- Often a struggle, but one worth pursuing
- Genuine spirit of collaboration

JUST the beginning..

- **D** Time to dig in.
- This program is Rev 1.
- Under 1% penetration...
 Opportunity is major for all

(8) Appeal for SMART implementation.

MANY CHALLENGES!

- **D** Reliability & Power Quality
- Safe Operation
- **Cost Effective / Electricity Savings**
- Minimal Environmental Impact
- **D** Energy Security

MINDSET SHIFT..

- Genuine desire to WANT to make it work... (as opposed to a negative default position)
- REALISTIC balance of risk
- Old assumptions revisited..
- □ Transparency
- Looking beyond supposed "utility mentality"
- Inspired leadership

Contact, Reference

Gregory Sachs, PE EmPower Solar, COO 516-509-3912

MIT Thesis – Defining, Modeling & Designing Smart Grid Systems

<u>http://www.empower-solar.com/blog/2010/09/03/empower-coo-greg-</u> <u>sachs-graduates-mit-publishes-smart-grid-design-evolution-thesis/</u>

