Software Engineering for LabVIEW Applications

Requirements Gathering Application Architecture

Development

Debugging & Testing

Deployment

Requirements Gateway **Design Patterns**

Object Orientation

Multicore

TOOLS

Dataflow

MathScript

Statechart

Simulation

Express

VI Analyzer

Real Time

Execution Trace

Desktop

Execution Trace

Unit Test Framework **Application**

Builder

Real Time

FPGA

Embedded

Automated Software Testing

Goals

- 1. Deliver a working product
- 2. Prove it works right
- 3. Mitigate risk of failure
- 4. Avoid last-minute changes

Why?

- 1. More complex software
- 2. Mission-critical applications
- 3. Team size is growing
- Increased scrutiny
- Decreased time

You Need to Prove:

- √ Satisfies customer expectations
- ✓ Meets safety requirements
- √ The application is reliable
- ✓ Errors are handled gracefully

Software Quality Standards

Company wide certification standard

ISO 9000

Voluntary certification standard for consistent <u>processes</u>

CMMI

<u>Process</u> improvement model sponsored by the National Defense Industrial Association

Product specific certification for quality

DO-178B

FAA standard for avionics software

FDA 21 CFR Part 820

Medical device standard

National Instruments is ISO 9001 Certified (HW&SW)

NI's QSM/NPI/SEP

Quality Management System (QMS)

Covers all of NI

New Product Introduction (NPI) process Engineering/Marketing/Manufacturing/Sales

Software Engineering Process (SEP)

Engineering only
How SW Engineers and Project Managers execute
NPI for SW products

Software Engineering Process Models

Software Engineering Process

- Process is independent of programming language
- Demonstrate a particular process for certification
- Automate this process for LabVIEW with toolkits and add-ons
- SCM is applied throughout process

Configuration Management Challenges

- Defining a central repository of code
- Management of multiple developers
- Detection and resolution of code collisions
- Tracking behavioral changes
- Identification of changes are who made them
- Ensuring everyone has latest copy of code
- Backing up old code versions
- Managing <u>all</u> files, not just source code

Software Configuration Manager for LabVIEW

System Level View

Track Changes

Integrate with SCC

Merge Graphical Code

Manage Files and Links

View Revision History

Revision	Changelist	Date	User
13	58	Sync to this revision	
12	52	Describe changelist	
11	47	Describe changelist	
10	46	2008/07/20	ekerry@ELI
9	40	2008/07/20	ekerry@ELI
8	39	2008/07/20	ekerry@ELI
7	18	2008/07/18	ekerry@ELI
6	13	2008/07/17	ekerry@ELI
5	12	2008/07/17	ekerry@ELI
4	11	2008/07/16	ekerry@ELI

Source Code Control Integration with LabVIEW

- Third-party source control integration with:
 - § Microsoft Visual SourceSafe
 - § Microsoft Team System
 - § Perforce
 - § Rational ClearCase
 - § PCVS (Serena) Version Manager
 - § MKS Source Integrity
 - § Seapine Surround SCM
 - § Borland StarTeam
 - § Telelogic Synergy
 - § ionForge Evolution
 - § subVersion**
- Access SCC tools via LabVIEW Project
- Project specific settings*

*New in LabVIEW 8.5

**subVersion is open source and requires plug-in

The Software Engineering Process TOOLS

Requirements
Gathering

Application
Architecture

Development
Testing

Deployment

Software Engineering Tools and Best Practices

Requirements Gateway **Design Patterns**

Object Orientation

Multicore

Dataflow

MathScript

Statechart

Simulation

Express

VI Analyzer

Real Time

Execution Trace

Desktop
Execution Trace

Unit Test Framework Application Builder

Real Time

FPGA

Embedded

Source Code Control Integration with LabVIEW

Software Design Phase

Requirements Gathering Challenges

- Agreeing upon what the application will do
- Defining acceptable and safe behaviors
- Defining tests for individual components
- Traceability from code to documents

Upstream	Text	Downstream	
REQ_ControlLev el	The application must maintain a separate control algorithm for controlling tank levels.	Level.vi	
REQ_ControlTe mperature	The application must maintain a separate control algorithm for controlling temperature.	Temperature.vi	
REQ_DisplayGra phInflow	The display must display a graph indicating the inflow rate.	Inflow Rate History	
REQ_DisplayGra phLevel	The display must contains a graph indicating the tank level.	Tank Level History	
REQ_DisplayGra phTemperature	The display must contains a graph indicating the tank temperature.	Tank Temperature History	
REQ_DisplayHea tIndicator	The display must show whether furnace is on or off.	Heat Indicator	
REQ_DisplayMin MaxLevels	The display must allow the operator to control the minimum and maximum levels for the tank.	Low Level Limit (lbm)	
REQ_DisplayMin MaxLevels	The display must allow the operator to control the minimum and maximum levels for the tank.	High Level Limit (lbm)	
REQ_DisplayMin MaxTemp	The display must allow the operator to control the minimum and maximum levels for the tank temperature.	Low Temp Limit (deg F)	

Requirements Traceability Solution from NI

Requirements Coverage with LabVIEW

1. Requirements defined in Word, LabVIEW references requirements Excel, PDF, DOORS, RequisitePro, ... Tank Simulation.vi File Edit Yew Project Operate Tools Window Help → ② ● II 1.2 GUI Components 1.2.1 Indicators REQ DisplayTankLevel Description and Tip The display must show the actual level in feet and must contain a visual "Elapsed Tine (sec)" Description the current level. (OBL) Elapsed Time (sec) is the time elapsed in sec after each 1 REQ DisplayTotalTime [Covers: REQ: DisplayTotalTime] Project definition The display must □ 🗀 LabVIEW Example REQ Display Valve 🎮 Tank Specifica Tank Specification 🌆 Tank Display "Elapsed Tine (sec)" Tip The display must REQ DisplayHeatIr Help Cancel The display must 🗀 🐚 🔝 🗖 Details | Modification Files Define a project to indicate Name Type of Analysis File or Directory | Ignor... | Inter... Variable what files are involved Tank Specification **™**]Word LabVIEW Example.d With images: Mark Display 🔛 LabVIEW LabVIEW Example.III With Images

Application Architecture Goals

- Determine how code will be divided based upon functionality
- Develop standard interfaces and APIs for code modules
- Ensure code scales and is readable and maintainable

Application Architecture TOOLS

Requirements
Gathering

Application
Architecture

Development
Testing

Deployment

- LabVIEW Design Patterns
- LabVIEW Statechart Module
- UML Tools
- Object-Oriented Design

Development Goals

- Implement the application
- Fulfill requirements documentation
- Detect and resolve incorrect code behavior
- Functionality passes test parameters
- Abide by style guidelines
- Optimize performance and execution

Develop Using Multiple Models of Computation

Requirements
Gathering

Application
Architecture

Development
Testing

Deployment

Debugging & Testing Practices

- Iterative testing during development
- Manual peer code review
- Static and dynamic code analysis
- Validation against requirements

Test Plan Development

RISK

Minor

Moderate

Major

- Black box
- Static analysis
- Black box
- Static analysis
- Code reviews

- White box
- Black box
- Static analysis
- Code reviews

Debugging & Testing TOOLS

- Constantly compiling
- Highlight execution
- Breakpoint manager
- Diagram cleanup
- National Instruments Style Guideline
- VI Profiler
- Coercion (Memory) Dots
- Conditional disable structures
- VI Analyzer Toolkit
- RT Execution Trace Toolkit
- Desktop Execution Trace

Debugging & Testing TOOLS

Goals of Dynamic Code Analysis

- What is consuming system memory?
- Am I capturing all the errors in my application?
- What was the last event to occur before...?
- What was the call-chain that led us to...?
- What thread is it executing in?
- Am I actually entering a specific event-case?
- What happened inside a structure?
- What order to these events occur in?
- Is a daemon process running in the background?
- Does the code behave different in an executable?

Desktop Execution Trace Toolkit

Monitor the execution of LabVIEW code at run-time in order to debug common problems in large applications such as memory leaks and un-handled errors.

Trace During Run-Time:

- Event Structures
- Memory Allocation
- Queues / Notifiers
- Reference Leaks
- Thread ID
- Unhandled Errors
- Dynamic / Static SubVIs
- Custom User Strings

Desktop Execution Trace Toolkit

Trace During Run-Time:

- Event Structures
- Memory Allocation
- Queues / Notifiers
 - conce Leaks

Strip Chart SubVI.vi	Memory Resize	7	Handle: 0x25CA3C8; Old: 142; New: 118
Strip Chart SubVI.vi	Memory Allocate	7	Handle: 0x25CA3C8; Size: 142
Strip Chart SubVI.vi	Memory Resize	7	Handle: 0x25CA3C8; Old: 142; New: 118
Strip Chart SubVI.vi	Error	7	Error: 7 (LabVIEW: File not found. The file might have I
Generate Trace Events.vi	User Defined	7	MyTestQ
Generate Trace Events, vi	Obtain Queue	7	MyTestQ - 0x66200002 : Created
Generate Trace Events.vi	Enqueue Element	7	MyTestQ - 0x66200002 : No Wait

Trace Production Systems Remotely

LabVIEW Desktop Execution Trace Toolkit

Network

VIs and Debuggable Executables

Run-Time Execution Information

LabVIEW Real-Time Execution Trace Toolkit

Network

Deployed Real-Time Applications

Run-Time Execution Information

Tools for Debugging and Testing

Debugging & **Testing Functional Validation** Advanced **Unit Test** of Code Framework Application Complexity **Dynamic Code Analysis** Desktop **Real Time Execution Trace Execution Trace** Simple Static Code Analysis VI Analyzer **Toolkit** Low Risk High Risk **Application Criticality**

Automatically test and validate VIs against requirements in order to demonstrate that it is working correctly according to design documents.

Test vector = Input value(s) + Expected output(s)

Test vector = Input value(s) + Expected output(s)

Test vector = Input value(s) + Expected output(s)

Requirements Traceability Solutions

Integration with Requirements Gateway

Deployment Goals

- Determine repeatable process
- Deploy to determine behavior on other targets
- Deliver a product to customer or end-user
- Make every installer and driver required for operation easily portable
- Remove information about sensitive code

Deployment Tools

- LabVIEW Applications Builder
- LabVIEW Project
 - § Many deployment documents on www.ni.com
- Replication tool for LabVIEW Real-Time
 - § Norton Ghost, etc for Windows

Deploy Software to Embedded Hardware Targets

NI LabVIEW Application Builder

ni.com/labview/power

Learn more about:

Software Engineering
Configuration Management
Development Practices
Tools for Validation and Testing

