

The Future of Thermal Imaging

## Submicron Device Level Thermal Characterization for Photonics and Power MMICs

Amir Koushyar Ziabari Purdue University

On behalf of Dustin Kendig

3287 Kifer Rd Santa Clara, CA 95051 <u>info@microsanj.com</u>

Copyright 2015 Microsanj, LLC. All Rights Reserved



## **Key Features**

- Superior submicron spatial resolution for more accurate peak temperature measurements (250nm)
- ✓ High temperature resolution (<0.1 °C) with lock-in</p>
- High speed transient imaging (800ps/50ns options)
- Through-the-Substrate imaging
- Low cost with high performance





#### The Future of Thermal Imaging

#### www.microsanj.com

## **Basic Principles of Thermoreflectance Imaging**

- Measurement for HEMT Transistor
- Transient measurements
- Gan High Power Amplifiers
- ESD protection devices
- Failure Analysis (FA) HotSpot detection
- Vias and Interconnects
- Optoelectronics (Photodiodes, Solar Cells, LEDs, and Lasers)
- Power amplifiers
- **Sub-diffraction thermoreflectance thermal imaging**
- **Summary**

## Thermoreflectance



- Thermoreflectance is the <u>change</u> <u>in reflected light due to a change</u> <u>in temperature</u>.
- ➢ 250nm Spatial Resolution
- ➢ 800ps Time Resolution
- <0.1C Temperature Resolution</p>



#### <u>Thermoreflectance is not based</u> <u>on black-body radiation</u>

Copyright 2015 Microsanj, LLC All rights reserved.





5

## **Diffraction Limited Spatial Resolution**

$$R \approx \frac{\lambda}{2 NA}$$

#### ~260 nm for 470 nm light & 0.9 NA





#### $0.5 \mu m$ GaN Gate

Copyright 2015 Microsanj, LLC All rights reserved.

# Spatial Resolution and Working Distance



|                |      |                             | Abbe Optical Resolution (µm) |              |              |  |  |
|----------------|------|-----------------------------|------------------------------|--------------|--------------|--|--|
|                | N.A. | Working<br>Distance<br>(mm) | 405nm<br>LED                 | 455nm<br>LED | 470nm<br>LED |  |  |
| SLMPLN 100x    | 0.6  | 7.5                         | 0.34                         | 0.38         | 0.39         |  |  |
| LMPLFLN 100x   | 0.8  | 3.4                         | 0.25                         | 0.28         | 0.29         |  |  |
| MPLFLN 100x    | 0.9  | 1.0                         | 0.23                         | 0.25         | 0.26         |  |  |
| MPLAPON 100x   | 0.95 | 0.35                        | 0.21                         | 0.24         | 0.25         |  |  |
| UMPlan Fl 100x | 0.95 | 0.2                         | 0.21                         | 0.24         | 0.25         |  |  |





## How it works -Thermoreflectance





System diagram

Copyright 2015 Microsanj, LLC All rights reserved.



# **Phase-Locked Timing Signals**





## Dependencies of the Thermoreflectance Coefficient

- Illumination Wavelength Dependent
- Material Dependent

$$C_{th} = \frac{1}{R_0} \frac{dR}{dT} \approx 10^{-4}$$

• Temperature sensitivity is increased dramatically by optimizing the wavelength of light for a specific material.

-e.g. choosing an LED of 500 nm produces almost no thermoreflectance signal for Al, but an LED of 800 nm increases the thermoreflectance signal by several orders of magnitude







## Thermoreflectance imaging setup





## **High Magnification Comparison**





• With AC measurement & pulsing DUT, localized peak temperatures are found in thermoreflectance image on 4  $\mu$ m wide heater lines.



The Future of Thermal Imaging

#### www.microsanj.com

## **Basic Principles of Thermoreflectance Imaging**

## Measurement for HEMT Transistor

- Transient measurements
- GaN High Power Amplifiers
- ESD protection devices
- Failure Analysis (FA) HotSpot detection
- Vias and Interconnects
- Optoelectronics (Photodiodes, Solar Cells, LEDs, and Lasers)
- Power amplifiers
- Sub-diffraction thermoreflectance thermal imaging
- **D** Summary

## **Typical GaN HEMT Structure**







# 10x Transient Thermal Images(40006p)



Here we can see how heat spreads throughout the DUT in response to a  $10\mu$ s pulse.

# 50x Thermal Image(40006p)







□ This data shows an <u>19.6C</u> ΔT between the source and gate region.
 □ Sample 40010, 9.1W



## 20µs, 470nm LED Gate Measurements



□ This data shows an <u>19.5C</u> △T between the source and gate region.
 □ Sample 40006p



The Future of Thermal Imaging

#### www.microsanj.com

- Basic Principles of Thermoreflectance Imaging
  Monsurement for HEMT Transistor
  - **Transient measurements**
- GaN High Power Amplifiers
- ESD protection devices
- Failure Analysis (FA) HotSpot detection
- Vias and Interconnects
- Optoelectronics (Photodiodes, Solar Cells, LEDs, and Lasers)
- Power amplifiers
- Sub-diffraction thermoreflectance thermal imaging
- **D** Summary













Transient Time (s)





□ This data shows that even with diamond having ~3x higher thermal conductivity the poor thermal interface between GaN and Diamond can cause higher heating closer to the junction.



# Diffusion length estimations 🕅



$$\mu_t = 2\sqrt{\alpha}$$

 $\mu = \sqrt{\frac{2\alpha}{2\alpha}}$ 

Effective thermal diffusion length (in the time domain, for pulsed heating)

Thermal diffusion length (in frequency domain, for periodical heating)

$$t = \frac{\mu^2}{4\alpha} \approx 3125\mu^2$$
 (for Si)

| 6-20W/cmK 3-11 cm2/s                          |          |          |          |          |           |          |          |          |                   |                   |  |  |
|-----------------------------------------------|----------|----------|----------|----------|-----------|----------|----------|----------|-------------------|-------------------|--|--|
| Diffusion time estimations                    | SiO2     | Si       | Cu       | Diamond  | DiamondUp | Al       | Ag       | Au       | ، 3 <i>C-</i> SiC | 4H-SiC 6H-SiC     |  |  |
| Thermal diffusivity: $oldsymbol{lpha}$ (m²/s) | 8.30E-07 | 8.80E-05 | 1.11E-04 | 3.00E-04 | 1.10E-03  | 8.42E-05 | 1.55E-04 | 1.27E-04 | 1.60E-04          | 1.70E-04 2.20E-04 |  |  |
| thickness (μm) diffusion time (μs)            |          |          |          |          |           |          |          |          |                   |                   |  |  |
| 1                                             | 0.301    | 0.003    | 0.002    | 0.001    | 0.000     | 0.003    | 0.002    | 0.002    | 0.002             | 0.001             |  |  |
| 5                                             | 7.530    | 0.071    | 0.056    | 0.021    | 0.006     | 0.074    | 0.040    | 0.049    | 0.039             | 0.037             |  |  |
| 10                                            | 30.120   | 0.284    | 0.225    | 0.083    | 0.023     | 0.297    | 0.162    | 0.197    | 0.156             | 0.147             |  |  |
| 25                                            | 188.253  | 1.776    | 1.408    | 0.521    | 0.142     | 1.856    | 1.011    | 1.230    | 0.977             | 0.919             |  |  |
| 50                                            | 753.01   | 7.10     | 5.63     | 2.08     | 0.57      | 7.42     | 4.05     | 4.92     | 3.91              | 3.68              |  |  |
| 100                                           | 3012.05  | 28.41    | 22.52    | 8.33     | 2.27      | 29.69    | 16.18    | 19.69    | 15.63             | 14.71             |  |  |
| 280                                           | 23614    | 223      | 177      | 65       | 18        | 233      | 127      | 154      | 123               | 115               |  |  |
| 500                                           | 75301    | 710      | 563      | 208      | 57        | 742      | 405      | 492      | 391               | 368               |  |  |
| 700                                           | 147590   | 1392     | 1104     | 408      | 111       | 1455     | 793      | 965      | 766               | 721               |  |  |
| 1000                                          | 301205   | 2841     | 2252     | 833      | 227       | 2969     | 1618     | 1969     | 1563              | 1471              |  |  |
| 1500                                          | 677711   | 6392     | 5068     | 1875     | 511       | 6681     | 3641     | 4429     | 3516              | 3309              |  |  |
| 2000                                          | 1204819  | 11364    | 9009     | 3333     | 909       | 11876    | 6472     | 7874     | 6250              | 5882              |  |  |

# GaN Thermal Image





□ Single HEMT finger

- 🖵 8V, 70mA
- 🗖 530nm LED
- -1.85E-4 Cth for Passivated Gold

Copyright 2015 Microsanj, LLC All rights reserved.

# **Overlay Images**





These images show the precise location of the thermal signal coming from the top gate metal

□ The Gate length is 0.3um



# **Heating Curves**





## HBT 100µs Transient Response



- 20X, 100us, 10% duty cycle
   3V, 20mA
- **530nm LED**



27

## 1µs AMCAD Pulse Thermal Transients



- □ 20X, 1us, 5% duty cycle
- □ 3V, 80mA, 530nm LED
- The data shows the fast thermal rise time and slow thermal decay of the device
- A ~700ns delay in the power signal was seen on the IVCAD software.
   This data clearly shows the resulting delay in the thermal signal.



#### The Future of Thermal Imaging

#### www.microsanj.com

- **D** Basic Principles of Thermoreflectance Imaging
- Measurement for HEMT Transistor
- Transient measurements
- GaN High Power Amplifiers
- ESD protection devices
- Failure Analysis (FA) HotSpot detection
- Vias and Interconnects
- Optoelectronics (Photodiodes, Solar Cells, LEDs, and Lasers)
- Power amplifiers
- Sub-diffraction thermoreflectance thermal imaging
- **D** Summary

# 1.25X Thermoreflectance Image



29



- 1.25X, 500us, 20% duty cycle, 30C Case Temperature
- Vg -2.5V, 150W RF
- 530nm LED, -3.74E-4/C for the thermoreflectance coefficient for passivated Au





30



- 5X, 500us, 20% duty cycle, <u>38C Case Temperature</u>
- Vg -2.5V, 150W RF
- 530nm LED, -3.74E-4/C for the thermoreflectance coefficient for passivated Au



31

# 500µs Transient Data



Above is the transient response of the center drain contact due to a 500µs pulse.

- 50X, 500µs, 20% duty cycle, 39C Case Temperature
- Vg -2.5V, 150W RF
- 530nm LED, -3.46E-4/C for the thermoreflectance coefficient for passivated Au 50x



# 10μs and 500μs Thermal Images





This data shows the change in temperature distribution between 10us and 500us. 10us is much more asymmetrical





#### The Future of Thermal Imaging

### www.microsanj.com

- **D** Basic Principles of Thermoreflectance Imaging
- Measurement for HEMT Transistor
- **Transient measurements**
- **Gan High Power Amplifiers**

## ESD protection devices

- Failure Analysis (FA) HotSpot detection
- Vias and Interconnects
- Optoelectronics (Photodiodes, Solar Cells, LEDs, and Lasers)
- Power amplifiers
- Sub-diffraction thermoreflectance thermal imaging
- **D** Summary

# 100 ns temporal resolution of ESD-type event





Characterization during operation to improve efficiency or identify undesired behavior.
 Non-uniform device turn on in a symmetrical Silicon Controlled Rectifier (SCR) in response to a 2.5 ms pulse



(a) SCR optical image



snapback after 300ns at 1.28A

ΔT [K]

Initial response to the 300 ns 120V pulse shows highly localized heating.

#### K. Maize, V. Vashchenko et al, IRPS, 2011.

Copyright 2013 Microsanj, LLC All rights reserved.

# Transient SCR response



10V was applied to the device. The current and precise voltage across the device was not measured for this series

Scaled 100µs image to Show temperature distribution



# **Transient SCR response**



36







#### The Future of Thermal Imaging

### www.microsanj.com

- **Basic Principles of Thermoreflectance Imaging**
- Measurement for HEMT Transistor
- **Transient measurements**
- **Gan High Power Amplifiers**
- ESD protection devices
- Failure Analysis (FA) HotSpot detection
- Vias and Interconnects
- Optoelectronics (Photodiodes, Solar Cells, LEDs, and Lasers)
- Power amplifiers
- Sub-diffraction thermoreflectance thermal imaging
- **D** Summary



# Thermal Image of <500nm Defect



# Small hotspot



12



## Transient Measurement of Latchup in an IC



40

- By synchronizing with the startup sequence of the IC, transient temperature maps can show different stages and locations of the power cycle
- For devices with higher power dissipations and poor heat sinking, low duty cycles can be used to limit overall heating.
   This can prevent damage done to the device that could occur at DC bias





## **Transient Behavior of IC Latch-Up**





42

## Current paths for DUT1 and DUT2

#### DUT1





# 100x Thermoreflectance image overlay



Microsanj

This is an overlay of the optical and thermal image at 100x magnification

At 100x the depth of focus is 870nm, so this thermal image is <u>focused on</u> <u>the top metal surface</u>.





#### The Future of Thermal Imaging

### www.microsanj.com

- **Basic Principles of Thermoreflectance Imaging**
- Measurement for HEMT Transistor
- Transient measurements
- GaN High Power Amplifiers
- ESD protection devices
- Failure Analysis (FA) HotSpot detection
  - Vias and Interconnects

Optoelectronics (Photodiodes, Solar Cells, LEDs, and Lasers)
Power amplifiers

- Sub-diffraction thermoreflectance thermal imaging
- **D** Summary

## High Speed Thermal Imaging (800 ps) 🕎 Microsanj

Study of heating in submicron interconnect via



## **Verify Interconnect & Via Integrity**





Determine if defects are due to single elements or are uniform throughout the whole chain. (2D temperature/power map instead of a 1 point electrical measurement)

Polysilicon via chain shows uniform power dissipation. If single element is causing higher resistance in the chain, it would have higher temperature compared to the other vias.

- a) Optical image
- b) Thermal image
- c) Temperature profile
- d) Merged optical/thermal image shows location of heating

46



#### The Future of Thermal Imaging

#### www.microsanj.com

- **Basic Principles of Thermoreflectance Imaging**
- Measurement for HEMT Transistor
- Transient measurements
- GaN High Power Amplifiers
- ESD protection devices
- Failure Analysis (FA) HotSpot detection
- Vias and Interconnects
- Optoelectronics (Photodiodes, Solar Cells, LEDs, and Lasers)
- **D** Power amplifiers
- Sub-diffraction thermoreflectance thermal imaging
- **D** Summary



## InP Laser device (cross section) with 530nm and 470nm LEDs



Forward diode voltage 0.73V

#### 250mA transient thermal images at 10, 20, 100, 200µs







## Transient response (250mA pulse)



#### Time [sec]

## Ge/Si p-i-n Waveguide Photodiode



M. Piels et al., Proc. of Integrated Photonics Research, Silicon and Nanophotonics (IPRSN)., July 2010





- (a) Grayscale image of DUT (7.4 μm channel width)
- (b) Thermoreflectance imaging result. Signal from unpassivated Al on p-contacts is below noise floor so these areas should be neglected
- (c) COMSOL simulation results
- (d) Surface temperature profile

#### Characterize Optoelectronic devices and verify thermal simulations



#### The Future of Thermal Imaging

### www.microsanj.com

- **Basic Principles of Thermoreflectance Imaging**
- Measurement for HEMT Transistor
- Transient measurements
- GaN High Power Amplifiers
- ESD protection devices
- Failure Analysis (FA) HotSpot detection
- Vias and Interconnects
- Optoelectronics (Photodiodes, Solar Cells, LEDs, and Lasers)
- **D** Power amplifiers
- Sub-diffraction thermoreflectance thermal imaging
   Summary

## High Power MOSFET Transistor Array





"Thermal Characterization of High Power Transistor Arrays", K. Maize et al, 25th IEEE SEMI-THERM Symposium, 2009.

# **SOA of Transistor Arrays**





Catastrophic failure at V<sub>ds</sub> = 37 V due to heating on source finger.

NLDMOS transistor array Pulsed SOA thermoreflectance: 2.5 ms pulse width, 8% duty, Vg = 2V, Vd = 1 to 50V.

Safe operating areas (SOA) of devices can be used to identify and troubleshoot reliability issues in electronic devices.

54

## Thermal image vs. simulation at low bias





Copyright 2013 Microsanj, LLC All rights reserved.



#### The Future of Thermal Imaging

### www.microsanj.com

- **Basic Principles of Thermoreflectance Imaging**
- Measurement for HEMT Transistor
- Transient measurements
- GaN High Power Amplifiers
- ESD protection devices
- Failure Analysis (FA) HotSpot detection
- Vias and Interconnects
- Optoelectronics (Photodiodes, Solar Cells, LEDs, and Lasers)
  Power amplifiers
- Sub-diffraction thermoreflectance thermal imaging
   Summary

# Sub-diffraction TR Imaging





□ λ=530nm and R≈360nm
□ Then why we observe thermal images?

## Sub-diffraction TR Imaging







180 Phase Shifter

Electric field amplitude



Binary Mask

Phase Shift Mask

Image Intensity

L.R. HARRIOTT, Limits of Lithogorophy, Proceedings of IEEE, 2001



## **Comparison with Modeling**





# **Thermal Blurring Model**

- 1. Temperature profile obtained from ANSYS
- 2. Calibrate the ANSYS result with Gold CTR only
- 3. Blur the thermal image with the Gaussian filter



W1µm, L20µm





## Sub-diffraction TR Imaging



microsanj

□ We know how the forward process works, we are solving the inverse problem → Accurate TR imaging down to 30-50nm

# Summary



- **250nm** thermal images lead to more accurate peak temperature measurements
- 800ps Transient thermal measurements show unique characteristics of devices (time-varying hot spots)
- Lock-in thermal imaging allows detection of  $\mu W$  defects.
- Non-contact/Non-destructive



62

## 👸 microsanj

# Publications

- Bias-Dependent MOS Transistor Thermal Resistance and Non-Uniform Self-heating Temperature
- Si/Ge uni-traveling carrier photodetector
- High-power high-linearity flip-chip bonded modified uni-traveling carrier photodiode
- Time and Frequency Domain CCD-Based Thermoreflectance Techniques for High-Resolution Transient Thermal Imaging
- Understanding the Thermoreflectance Coefficient for High Resolution Thermal Imaging of Microelectronic Devices
- High Speed Transient Thermal Imaging of Microelectronic Devices and Circuits
- Thermal Characterization of High Power Transistor Arrays
- Time and Frequency Domain CCD-Based Thermoreflectance Techniques for High-Resolution Transient Thermal Imaging
- Thermoreflectance Imaging of Defects in Thin-Film Solar Cells
- Thermal Imaging of Encapsulated LEDs
- Quantum Electronics Group, Jack Baskin School of Engineering at UC Santa Cruz
- Thermal Imaging for Reliability Characterization of Copper Vias
- Ultrafast Submicron Thermoreflectance Imaging
- Sub-diffraction thermal imaging in HEMT Transistors

#### More information at <a href="http://microsanj.com/news-and-papers">http://microsanj.com/news-and-papers</a>



# Microsanj Contact Information

- Website: <u>www.microsanj.com</u>
  - For papers, presentations, news, data sheets, application notes
- Information: info@microsanj.com

For questions, product updates & availability, consulting services



## Bonus





66

## Gate and Drain Transient Response



# 100x thermal image of gate



67



This shows the side temperature profile of the center of the pHEMT. The dark channel region is not calibrated for, and did not show a strong signal.

Copyright 2013 Microsanj, LLC All rights reserved

# 3D Temperature Profiles of HEMT at 100x











Figure 8 – Thermal resistance impacts due to material alterations



# **GGNFET Transient Images**





□ These are transient thermoreflectance images at 1, 10, & 100µs
 □ Each image is scaled to show the temperature distribution.





# GGNFET, 200ns, 30V pulse



This shows the temperature rise (a.u.) of the GGNFET in response to a 200 ns 30V pulse

