
Slide 1Copyright © 2004 Dennis J. Frailey, All Rights Reserved

Meeting Tight
Software Schedules

Through
Cycle Time Reduction

Dennis J. Frailey

Raytheon Company

frailey@acm.org

Sponsored by ACM and Raytheon Lectureship Program

Slide 2Copyright © 2004 Dennis J. Frailey, All Rights Reserved

Copyright Statement

© Copyright 2004 by Dennis J. Frailey.
All rights reserved. Abstracting is

permitted with credit to the source.
Libraries and individuals are permitted

to photocopy for private use. For
permission to copy, reprint, or

republish write to Dennis J. Frailey.

Slide 3Copyright © 2004 Dennis J. Frailey, All Rights Reserved

Note

The comments herein are my personal
views and are not official positions of

ACM or of Raytheon Company.

Slide 4Copyright © 2004 Dennis J. Frailey, All Rights Reserved

Outline
• Background - Why Cycle Time is

Important
– Cycle Time Reduction Issues and Examples
– Defining Cycle Time

• Three Fundamental Problems
• Typical Causes
• Spotting the Symptoms and

Opportunities
• Fixing the Problems - Five Principles
• A Few Lessons Learned

Slide 5Copyright © 2004 Dennis J. Frailey, All Rights Reserved

Why Cycle Time is Important

Yes, Sir!
Right Away,

Sir.

I Need
that Software

no later than next
week! Why is it taking

so long?

But we’re
already working

overtime!

We’ll work
overtime to get

it out, sir.

Slide 6Copyright © 2004 Dennis J. Frailey, All Rights Reserved

Cycle Time Gives You a
Competitive Edge

• You sell your software while the
competitor is still completing theirs

• You start the next software product
while the competitor is still completing
the current one

• Lower your costs
• Or start development later in the

program cycle
• And allow less time to change

requirements

Slide 7Copyright © 2004 Dennis J. Frailey, All Rights Reserved

How Can Cycle Time be Improved?

• The following video
illustrates how to
improve cycle time

• As you watch, think of
ideas that might be
applicable to software
development

What did they do to reduce cycle time?

Slide 8Copyright © 2004 Dennis J. Frailey, All Rights Reserved

Some Lessons from the Cycle
Time Video

• What did they
do?

• Is there a
software
counterpart?

Things they did:
+_%$#@&
~~~~~~~~~~
~~~~~~~~~~~
~~~~~~~~~~~



Slide 9Copyright © 2004 Dennis J. Frailey, All Rights Reserved

Definition of Cycle Time

Cycle time is the time required to 
execute all activities in a process, 

including actual processing time AND 
all waiting time

Consider a “10 minute” oil change



Copyright © 2004 Dennis J. Frailey, All Rights Reserved

How do You Measure Cycle Time?

STATIC CYCLE TIME

The average of the actual cycle times (CT)
experienced by some number (n) of products

CT1 + CT2 + CT3 + CT4 +...+ CTn

n
Cycle Time = 

• But this is not always easy to measure when many 
of the products are only partway through the 
process
… so we need a dynamic measure



Copyright © 2004 Dennis J. Frailey, All Rights Reserved

Dynamic Cycle Time

DYNAMIC CYCLE TIME

The total work in process divided by the 
throughput of the process

Cycle Time = WIP (products being developed)
THROUGHPUT (products produced/unit time)

WIP = Work in Process

For related background, see Gross and 
Harris, in reference list, p83.



Slide 12Copyright © 2004 Dennis J. Frailey, All Rights Reserved

How is Cycle Time Improved?
• Doing every process step faster?
• Working longer hours?
• Piling up work?

Faster!!!Faster!!!



Slide 13Copyright © 2004 Dennis J. Frailey, All Rights Reserved

• Doing every process step faster?
• Working longer hours?
• Piling up work?

Faster!!!Faster!!!

How is Cycle Time Improved?



Slide 14Copyright © 2004 Dennis J. Frailey, All Rights Reserved

Three Fundamental Problems
• Variability

– Some parts of the process are starved 
while other parts are producing excessive 
output

– Performance becomes inconsistent and 
unreliable

– This is what causes traffic jams!
• Complex Processes

– More work to do than is necessary
– More opportunities to make mistakes

• Bottlenecks and Constraints
– Things that slow everything down



Slide 15Copyright © 2004 Dennis J. Frailey, All Rights Reserved

Typical Causes of
Cycle Time Problems

Variability Complexity Bottlenecks
Misplaced
Priorities
Incompatible
Tools
Inefficient
Procedures
Poor
Planning
etc.



Slide 16Copyright © 2004 Dennis J. Frailey, All Rights Reserved

Spotting the Symptoms and the 
Opportunities

• Symptom: excess WIP or “work in 
process” 

– work waiting to be done that is not being 
done -- waiting in queues instead

– something is holding up the process
• Causes: limited capacity, poor 

processes, poor execution, or various 
barriers imposed by the organization

Cycle Time = WIP (products being developed)
THROUGHPUT (products produced/unit time)



Slide 17Copyright © 2004 Dennis J. Frailey, All Rights Reserved

Examples of Excessive WIP
for Software

• Code waiting to be tested
• Designs waiting to be coded
• Specifications waiting to be 

inspected
• Change requests waiting for 

approval
• Hundreds more...



Slide 18Copyright © 2004 Dennis J. Frailey, All Rights Reserved

Other Symptoms of
Cycle Time Problems

• Long waits and queues
• High inventory levels
• Excessive overtime
• Rework / scrap

Tickets -->Tickets -->

How long is
this line?

How long is
this line?



Slide 19Copyright © 2004 Dennis J. Frailey, All Rights Reserved

Reducing Rework -
The Impact of Defects on Cycle Time

Process
Step

Undetected 

Defect

Several Steps

Process
Step

Defect Detected



Slide 20Copyright © 2004 Dennis J. Frailey, All Rights Reserved

Doing it Over Again

Process
Step

Undetected 

Defect

Several Steps

Process
Step

Defect Detected

Rework costs money and time



Slide 21Copyright © 2004 Dennis J. Frailey, All Rights Reserved

Look for Rework

• REWORK is anything you do because you 
didn’t do it right the first time

– debugging
– correcting documentation
– correcting designs
– correcting requirements
– retesting
– responding to customer complaints



Slide 22Copyright © 2004 Dennis J. Frailey, All Rights Reserved

Isn’t Rework Inevitable?

• SOME rework is necessary, but most is 
not

• Total rework is a measure of process 
efficiency

• You probably have a lot more rework
than you think



Slide 23Copyright © 2004 Dennis J. Frailey, All Rights Reserved

Fixing the Problems --
Five Principles of Cycle Time 

Improvement

Warning … some of 
these are counter-

intuitive



Slide 24Copyright © 2004 Dennis J. Frailey, All Rights Reserved

Where are the Opportunities?

• ~30% of the improvement comes from 
technical changes

– Process changes
– Tool changes
– Changing rules and operations

• ~70% of the improvement comes from 
organizational, cultural and environmental 
changes, such as

– Education
– Communication
– Management
– Teamwork



Slide 25Copyright © 2004 Dennis J. Frailey, All Rights Reserved

Principle #1
Look at the Entire Process

• Don’t optimize only your local part of 
the process

• Speeding up every step of the process 
will cost a lot and will not help as much 
as speeding up the bottlenecks

• Beware of inappropriate reward 
systems!



Slide 26Copyright © 2004 Dennis J. Frailey, All Rights Reserved

Principle #2
Gain from Cycles of Learning

Sometimes it is better to do the job many times, 
in small chunks, than to do it all at once

Changes are received and processed here ( )



Slide 27Copyright © 2004 Dennis J. Frailey, All Rights Reserved

Ways to Implement the Cycles of 
Learning Principle

• Try a new compiler or debugging tool on one 
module first to see how well it works

– Then decide whether to use it on more modules
• Write one module using the new language

– Then decide whether to use the new language on a 
larger scale

• Take one subset of the features through the 
whole process flow first to work out the quirks

• Test server performance using dummy data



Slide 28Copyright © 2004 Dennis J. Frailey, All Rights Reserved

Principle #3
Use Small Batches

• Important when requirements change a lot or 
the process is new

The work to be done

Small batch 
principle

- allows for 
finding errors 
and 
requirements 
changes without 
large amounts 
of rework 

Batch 2
Rework

Batch 3 Batch 4Batch 1
Rework

Batch 5



Slide 29Copyright © 2004 Dennis J. Frailey, All Rights Reserved

Principle #4
Achieve Smooth Flow

– Lots of entrances and exits
– Vehicles of different sizes 

and speeds
– Some drivers uncertain of 

what they want to do
– Lots of stoplights to 

“control” the flow (mainly 
to prevent collisions)

– Note: streets are usually 
crowded

The typical process runs unevenly, like vehicles 
on a city street



Slide 30Copyright © 2004 Dennis J. Frailey, All Rights Reserved

The Ideal is Smooth Flow
• The ideal process flows smoothly, 

like a train running on tracks
– Note: tracks are empty most of the 

time



Slide 31Copyright © 2004 Dennis J. Frailey, All Rights Reserved

What Prevents
Smooth Flow?

• Bottlenecks and 
constraints that lead to:

– Queues and waits
– Work in process

• For example:
– Work piling up
– Machines or software not being 

available
– Excessive approval 

requirements
– People pulled off projects
– Excessive rework
– Product stuck in test

Incoming work



Slide 32Copyright © 2004 Dennis J. Frailey, All Rights Reserved

Principle #5
Avoid the Naïve, Obvious and Wrong 

Solutions to Cycle Time Problems

• Such as …
– Shortening the longest step of the process
– Shortening every step of the process
– Cutting the overhead without assessing the 

impact



Slide 33Copyright © 2004 Dennis J. Frailey, All Rights Reserved

A Few Lessons Learned



Slide 34Copyright © 2004 Dennis J. Frailey, All Rights Reserved

Be Careful Whom you 
Reward

• Know the difference between busy and 
productive

• Examine the value produced, not the 
effort spent

The Tortoise Sometimes Beats the Hare



Copyright © 2004 Dennis J. Frailey, All Rights Reserved

Independent Observers May See
Problems and Opportunities the Best

• Practitioners generally focus on their 
work and on what they THINK is 
happening rather than on what IS 
happening

– They tend not to see all of the waits, 
queues, etc. that they cause themselves

– Their perception of how they spend their 
time is generally incorrect

– They are too busy getting the job done to 
see how they might improve it



Copyright © 2004 Dennis J. Frailey, All Rights Reserved

The Athletic Coach Analogy

• Just as athletes rely on coaches, software 
engineers need to learn to trust in others to 
observe and help them do better



Copyright © 2004 Dennis J. Frailey, All Rights Reserved

Software Developers Are
Accustomed to Improving Cycle Time

• Think of your software development 
process as a large computer program 
that runs too slow.  

> How would you make it run faster?
• Imagine how you would speed up a 

computer program …….
• Then draw analogies to the software 

development process …
• And improve the process the way you 

would improve a program



Slide 38Copyright © 2004 Dennis J. Frailey, All Rights Reserved

Summary
• Background - Why Cycle Time is 

Important
– Cycle Time Reduction Issues and 

Examples
– Defining Cycle Time

• Three Fundamental Problems
• Typical Causes
• Spotting the Symptoms and 

Opportunities
• Fixing the Problems - Five Principles
• A Few Lessons Learned



Slide 39Copyright © 2004 Dennis J. Frailey, All Rights Reserved

References

• Deming, W. Edwards, Out of the Crisis, MIT 
Press, 1982.

• Goldratt, Eliyahu M. & Jeff Cox, The Goal, 
(North River Press, 1984.)  Also, Theory of 
Constraints, It’s Not Luck, and Critical Chain 
Management.

• Gross and Harris, Fundamentals of Queueing 
Theory (Wiley).

• Swartz, James B.,  The Hunters and the 
Hunted, (Portland, Oregon, Productivity 
Press, 1994) ISBN 1-56327-043-9.



Slide 40Copyright © 2004 Dennis J. Frailey, All Rights Reserved

END

Questions?
Comments?


	Meeting Tight Software Schedules ThroughCycle Time Reduction
	Copyright Statement
	Note
	Outline
	Why Cycle Time is Important
	Cycle Time Gives You a Competitive Edge
	How Can Cycle Time be Improved?
	Some Lessons from the Cycle Time Video
	Definition of Cycle Time
	Three Fundamental Problems
	Typical Causes ofCycle Time Problems
	Spotting the Symptoms and the Opportunities
	Other Symptoms ofCycle Time Problems
	Reducing Rework - The Impact of Defects on Cycle Time
	Doing it Over Again
	Look for Rework
	Isn’t Rework Inevitable?
	Fixing the Problems --Five Principles of Cycle Time Improvement
	Where are the Opportunities?
	Principle #1
	Gain from Cycles of Learning
	Ways to Implement the Cycles of Learning Principle
	Principle #3
	Principle #4
	The Ideal is Smooth Flow
	What PreventsSmooth Flow?
	Principle #5
	A Few Lessons Learned
	Be Careful Whom you Reward
	Software Developers AreAccustomed to Improving Cycle Time
	Summary
	References
	END

