
10/19/0510/19/05 11Software Design PatternsSoftware Design Patterns

Nat. ThomasNat. Thomas
Software EngineeringSoftware Engineering
Telephonics Inc.Telephonics Inc.
Long Island IEEE Lecture SeriesLong Island IEEE Lecture Series

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 22

Software Design Patterns AgendaSoftware Design Patterns Agenda

• What are they?
• Why are they important?
• Pattern Taxonomy
• GoF – Gang of Four – The foundation
• List of original patterns
• Brief Unified Modeling Language (UML) overview
• Strategy example
• Singleton example
• Observer example
• Reference Material (books, web sites)

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 33

What Are They? What Are They?

• Definitions
– GoF – They are descriptions of communicating

objects and classes that are customized to solve a
general design problem in a particular context.

– “Head First Design Patterns” – someone has already
solved your problem

– Bruce Eckel states (from “Thinking in Patterns”) -
Probably the most important step forward in object-
oriented design - a pattern embodies a complete idea
within a program, and thus it can sometimes appear
at the analysis phase or high-level design phase.

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 44

Why are they Important?Why are they Important?
• You’re exploiting the wisdom and knowledge of

lessons learned by other developers and
designers who have been down the path you are
about to travel.

• Accommodates change – software will always
be changing so the design should expect and
deal with it.

• Change - the one constant in software
development.

• No Silver Bullet – refer to article No Silver Bullet: Essence and
Accidents of Software Engineering by Frederick P. Brooks, Jr.

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 55

Pattern TaxonomyPattern Taxonomy
• Bruce Eckel says watch out for pollution of the term because of

it being associated with “good OOD”. Defines 4 categories:
– Idiom - how we write code in a particular language to do a

particular type of thing. This could be something as common as the
way you code the process of stepping through an array in C (and
not running off the end).

– Specific Design: the solution that we come up with to solve a
particular problem. This might be a clever design, but it makes no
attempt to be general.

– Standard Design: a way to solve this kind of problem. A design
that has become more general, typically through reuse.

– Design Pattern: how to solve an entire class of similar problem.
This usually only appears after applying a standard design a
number of times, and then seeing a common pattern throughout
these applications.

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 66

Pattern Taxonomy Con’tPattern Taxonomy Con’t

• Each category is fine for the problem
being solved. Don’t waste time trying to
solve every problem with a design pattern.

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 77

Gang of Four Gang of Four

• Book – “Design Patterns – Elements of
Reusable Object-Oriented Software” by
Erich Gamma, Richard Helm, Ralph
Johnson & John Vlissides

• Released 1995
• Describes 23 patterns in 3 categories

(Creational, Structural & Behavioral)

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 88

Design Pattern Space Design Pattern Space

Visitor

Strategy

StateProxy

ObserverFlyweight

MementoFaçade

MediatorDecoratorSingleton

IteratorCompositePrototype

CommandBridgeBuilder

Chain of ResponsibilityAdaptor(object)Abstract FactoryObject

Interpreter
Template method

Adaptor(class)Factory MethodClassScope

BehavioralStructuralCreational

Purpose

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 99

Unified Modeling LanguageUnified Modeling Language

• All examples are illustrated using UML notation.
• GoF referred to using something called OMT

(Object Modeling Technique) which heavily
influenced the present day UML.

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 1010

Simple UML exampleSimple UML example

class Printer Private attributes in class

Public methods

UML - Unified Modeling Language notation

Printer

+Reset()
+Test():int
+Print()

-ErrorCode:int
-TonerStatus:int

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 1111

Duck Pond Simulation Design Duck Pond Simulation Design -- 11

• Joe works for a company that makes a
highly successful duck pond simulation
game.

• The initial designers used OO techniques
and created a Duck superclass from which
all other ducks inherited.

1212

+display():void

RubberDuck

+swim():void
+display():void

Duck

+display():void

MallardDuck

Abstract class

display() is pure
virtual requiring
the subclasses
to implement
there own
display behavior.

Duck Pond Simulation Design Duck Pond Simulation Design -- 22

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 1313

Duck Pond Simulation Design Duck Pond Simulation Design -- 33

• Over the year the company has been
under increasing pressure from
competitors.

• After a week-long off-site brainstorming
session over golf, the company executives
think it’s time for major innovation.

• They want something impressive for the
vendors’ show in Maui next week.

• They want flying ducks!!!

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 1414

Duck Pond Simulation Design Duck Pond Simulation Design -- 44

• Joe’s manager told them it will be no
problem for Joe to whip up something in a
week.

• “After all,” said Joe’s boss “he’s an OO
programmer…how hard can it be?”

• Joe adds a fly method to the Duck super
class.

1515

+display():void

MallardDuck

+swim():void
+display():void
+quack():void
+fly():void

Duck

+display():void

RedheadDuck

+display():void
+quack():void
+fly():void

RubberDuck

RubberDucks can't
quack or fly so Joe
ov errides the base
class's quack and fly
methods..

Duck Pond Simulation Design Duck Pond Simulation Design -- 55

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 1616

Duck Pond Simulation Design Duck Pond Simulation Design -- 66
• Joe gets a call from an upset executive in Maui.

There are flying rubber duckies all over the
screen.

• What happened?
• By adding the fly capability to the superclass, he

gave flying behavior to all ducks, even those that
can’t fly.

1717

+display():void

MallardDuck

+swim():void
+display():void
+quack():void
+fly():void

Duck

+display():void

RedheadDuck

+display():void
+quack():void
+fly():void

RubberDuck

RubberDucks can't
quack or fly so Joe
ov errides the base
class's quack and fly
methods..

Duck Pond Simulation Design Duck Pond Simulation Design -- 77

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 1818

Duck Pond Simulation Design Duck Pond Simulation Design -- 88

• Joe “thinks” about inheritance
• He could override the fly method and the

quack methods in the RubberDuck class.
• What happens if a wood decoy duck is

added? Override the fly and quack
methods again.

• Joe has to do this overriding stuff for every
new Duck subclass added in the future.

1919

+display():void

MallardDuck

+swim():void
+display():void
+quack():void
+fly():void

Duck

+display():void

RedheadDuck

+display():void
+quack():void
+fly():void

RubberDuck

RubberDucks can't
quack or fly so Joe
ov errides the base
class's quack and fly
methods..

Duck Pond Simulation Design Duck Pond Simulation Design -- 99

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 2020

Duck Pond Simulation Design Duck Pond Simulation Design -- 1010

• Joe thinks again and removes the fly and
quack methods.

• He places the methods in new interface
classes Flyable and Quackable.

• Now only classes that need to fly or quack
inherit from them.

• He believes this is good. Seems
reasonable.

2121

+quack():void

Quackable

+display():void
+fly():void
+quack():void

MallardDuck

+display():void
+quack():void

RubberDuck

+fly():void

Flyable

+display():void
+fly():void
+quack():void

RedheadDuck

+swim():void
+display():void

Duck
Now the problem
becomes a
maintenance
nightmare because
the fly behavior may
have to change. That
means modifying the
code in each of the
classes that inherit
the fly interface.

Duck Pond Simulation Design Duck Pond Simulation Design -- 1111

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 2222

Duck Pond Simulation Design Duck Pond Simulation Design -- 1212

• What happens if you have to make a
change to flying behavior? Not all ducks
exhibit the same flying behavior. Code
reuse is blown away.

• You might need a design pattern to save
the day.

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 2323

Duck Pond Simulation Design Duck Pond Simulation Design -- 1313
• Design Principle

– Identify the aspects of your application that
vary and separate them from what stays the
same.

– Put another way - Take what varies and
“encapsulate” it so it won’t effect the rest of
your system.

2424

+fly():void

FlyRocketPowered

+quack():void

NoQuack

+quack():void

Quack

+fly():void

FlyNoWings

+quack():void

QuackBehavior

+quack():void

Squeak

+fly():void

FlyBehavior

+fly():void

FlyWithWings

Flyable's subclasses
represent all the
possible flying
behaviors and likewise
for QuackBehavior.

Duck Pond Simulation Design Duck Pond Simulation Design -- 1414

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 2525

Duck Pond Simulation Design Duck Pond Simulation Design -- 1515

• Now other objects can reuse our fly and
quack behaviors because they are no
longer hidden away in our Duck
subclasses.

• We can add new behaviors without
modifying our existing behavior classes or
touching any of the Duck subclasses that
use flying or quack behaviors.

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 2626

Duck Pond Simulation Design Duck Pond Simulation Design -- 1616
• Design Principle

– Program to an interface, not an
implementation

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 2727

Duck Pond Simulation Design Duck Pond Simulation Design -- 1717
• Programming to an implementation
Dog* D = new Dog();
D->makesound(); // dog barking
• Programming to an interface
Animal* A = new Dog();
A->makesound();
• Even better
Animal* A = getAnimal();
A->makesound();

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 2828

Duck Pond Simulation Design Duck Pond Simulation Design -- 1818
• Fly and Quack methods are pulled out of

the Duck superclass.
• FlyBehavior and QuackBehavior classes

encapsulate all possible fly and quack
behaviors.

• Include behavior setter methods in the
Duck class.

2929

+display():void

MallardDuck

-flyBehavior : FlyBehavior
-quackBehavior : QuackBehavior

+performQuack():void
+performFly():void
+setFlyBehavior(FlyBehavior fb):void
+setQuackBehavior(QuackBehavior qb):void
+swim():void
+display():void

NewDuckSuperclass

Now ModelDuck's behav ior can be set at runtime v ia
the set methods.
The constructor could set default behav iors:
FlyBehav ior* flyBehav ior = new FlyWithWings;
quackBehav ior* quackBehav ior = new Squeak;

Duck Pond Simulation Design Duck Pond Simulation Design -- 1919

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 3030

Duck Pond Simulation Design Duck Pond Simulation Design -- 2020
• The NewDuckSuperclass delegates flying

and quacking behavior instead of having
fly and quack methods

• In previous solutions we were locked into
using the implementation defined in the
Duck class or in the Duck subclass with no
ability to change the behavior at runtime.

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 3131

Duck Pond Simulation Design Duck Pond Simulation Design -- 2121
class NewDuckSuperclass
{

FlyBehavior* flyBehavior;
QuackBehavior* quackBehavior;

public:
void performfly()

{
flyBehavior->fly();

}
void performQuack()
{

quackBehavior->quack();
}

}

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 3232

Duck Pond Simulation Design Duck Pond Simulation Design -- 2222
Class MallardDuck : public NewDuckSuperclass
{
Public:

MallardDuck()
{

quackBehavior = new Quack();
flyBehavior = new FlyWithWings();

}
}

• The constructor initializes the MallardDuck to specific behaviors. We can
make our design more flexible by adding methods to NewDuckSuperclass
to allow changing the behavior at runtime

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 3333

Duck Pond Simulation Design Duck Pond Simulation Design -- 2323
Void main()
{
NewDuckSuperclass* mallard = new MallardDuck;

mallard->performQuack();
mallard->performFly();

mallard->setFylBehavior(new FlyRocketPowered);
mallard->performFly();

}

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 3434

Duck Pond Simulation Design Duck Pond Simulation Design -- 2424
• Congratulations you have just completed

the Strategy Pattern!!!
• The Strategy Pattern encapsulates a

family of algorithms and makes them
interchangeable.

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 3535

Singleton Pattern Singleton Pattern --11

• Your ticket to creating one and only one
object.

• The simplest of all the design patterns.

3636

-instance : Singleton*
-item : int

Singleton

Singleton Pattern Singleton Pattern --22

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 3737

Singleton Pattern Singleton Pattern -- 33
class Singleton
{

Singleton* getInstance();
int getItem();

private:
static Singleton* instance;
Singleton(); //constructor private
int Item;

}
Singleton::instance = (0); //set new Singleton() here for thread safety

Singleton* Singleton::getInstance()
{ // called lazy instantiation and my not work in a multithreaded situation

// or use double-checked locking here for thread safety
if (instance == NULL)
{

instance = new Singleton();
}
return instance;

}

//usage
Singleton::getInstance()->getItem();

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 3838

Observer Pattern Observer Pattern -- 11

• Keep your objects in the know.
• Don’t miss out when something interesting

happens.
• Define a one to many dependency

between objects so that when one object
changes state, all its dependents are
notified and updated automatically.

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 3939

Observer Pattern Observer Pattern -- 22

• Statement of work – states that you have just
received a contract to build the next generation
internet based weather station.

• The station shall be responsible for monitoring
humidity, temperature and pressure and will
update three displays with these parameters.

• The three displays shall show current conditions,
weather stats and forecast.

4040

Observer Pattern Observer Pattern -- 33

WeatherData object Display

Temperature Sensor

Pressure sensor

Weather Station

Humidity Sensor

4141

Observer Pattern Observer Pattern -- 44

+display():void

CurrentConditionsDisplay
-temperature : float
-humidity : float
-pressure : float

+measurementsChange
+getTemperature():float
+getHumidity():float
+getPressure():float

WeatherData

+display():void

StatisticsDisplay

+display():void

ForecastDisplay

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 4242

Observer Pattern Observer Pattern -- 55
class WeatherData {
public :

WeatherData();
~WeatherData();
void measurementsChanged();

private :

float getHumidity();
float getPressure();
float getTemperature();

//// Attributes ////
protected :

float humidity;
float pressure;
float temperature;

};

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 4343

Observer Pattern Observer Pattern -- 77

• You know how a newspaper works.
• You want the paper, you subscribe.
• You don’t want the paper anymore, you

unsubscribe.
• Publishers + Subscribers = Observer

Pattern
• Publishers are called Subjects and

Subscribers are called Observers

4444

+registerObserver(Observer* ob):void
+removeObserver(Observer* ob):void
+notifyObserver():void

Subject

<<Interface>>

+update(Subject* changedSubject):void
+someothermethods():void

ConcreteObserver

+measurementsChanged():void
+getTemperature():float
+getHumidity():float
+getPressure():float

WeatherData

+update(Subject* changedSubject):void

Observer

<<Interface>>

observers

*

All the methods in the
Subject are virtual.
Observer classes update
is pure virtual so when
you inherit you are
forced to implement it.

The concrete classes
are your classes. You
just inherit from the
interface classes.

Only the Subject contains
the state we are interested in.

Observer Pattern Observer Pattern -- 88

4545

Observer Pattern Observer Pattern -- 99

+registerObserver(Observer* ob):void
+removeObserver(Observer* ob):void
+notifyObserver():void

Subject

<<Interface>>

-temperature : float
-humidity : float
-pressure : float

+measurementsChanged():void
+getTemperature():float
+getHumidity():float
+getPressure():float

WeatherData

+update(Subject* changedSubject):voi

Observer

<<Interface>>

+display():void
+update(Subject* changedSubject):voi

CurrentConditionsDisplay

+display():void
+update(Subject* changedSubject):void

ForecastDisplay

+display():void
+update(Subject* changedSubject):void

StatisticsDisplay

observers
*

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 4646

Causes for redesignCauses for redesign
• Creating an object by specifying a class explicitly – Abstract Factory,

Factory Method, Prototype
• Dependence on specific operation – Chain of Responsibility,

Command
• Dependence on hardware and software platforms – Abstract

Factory, Bridge
• Dependence on object representations and implementations –

Abstract Factory, Bridge, Memento, Proxy
• Algorithmic dependencies – Builder, Iterator, Strategy, Template

Method, Visitor
• Tight coupling – Abstract Factory, Bridge, Chain of Responsibility,

Command, Façade, Mediator, Observer
• Extending functionality by subclassing – Bridge, Chain of

Responsibility, Composite, Decorator, Observer, Strategy
• Inability to alter classes conveniently – Adapter, Decorator, Visitor

10/19/0510/19/05 Software Design PatternsSoftware Design Patterns 4747

ReferencesReferences
• Design Patterns – Elements of Reusable Object-Oriented Software

by Erich Gamma, Richard Helm, Ralph Johnson & John Vlissides
1995

• Head First Design Patterns by Eric & Elisabeth Freeman copyright
2004 – very well illustrated

• wickedlysmart.com/HeadFirst/HeadFirstDesignPatterns/HeadFirstP
atternsIndex.html

• Thinking in Patterns by Bruce Eckel – book is online
(www.bruceeckel.com)

• “No Silver Bullet - Essence and Accidents of Software Engineering”
Computer Magazine; April 1987 by Frederick P. Brooks, Jr.,
University of North Carolina at Chapel Hill
(www.virtualschool.edu/mon/SoftwareEngineering/BrooksNoSilverB
ullet.html)

• Object-Oriented Design Heuristics by Arthur J. Riel – good book on
design principles.

http://www.virtualschool.edu/mon/SoftwareEngineering/BrooksNoSilverBullet.html

	Software Design Patterns Agenda
	What Are They?
	Why are they Important?
	Pattern Taxonomy
	Pattern Taxonomy Con’t
	Gang of Four
	Design Pattern Space
	Unified Modeling Language
	Simple UML example
	Duck Pond Simulation Design - 1
	Duck Pond Simulation Design - 3
	Duck Pond Simulation Design - 4
	Duck Pond Simulation Design - 6
	Duck Pond Simulation Design - 8
	Duck Pond Simulation Design - 10
	Duck Pond Simulation Design - 12
	Duck Pond Simulation Design - 13
	Duck Pond Simulation Design - 15
	Duck Pond Simulation Design - 16
	Duck Pond Simulation Design - 17
	Duck Pond Simulation Design - 18
	Duck Pond Simulation Design - 20
	Duck Pond Simulation Design - 21
	Duck Pond Simulation Design - 22
	Duck Pond Simulation Design - 23
	Duck Pond Simulation Design - 24
	Singleton Pattern -1
	Singleton Pattern - 3
	Observer Pattern - 1
	Observer Pattern - 2
	Observer Pattern - 5
	Observer Pattern - 7
	Causes for redesign
	References

