
Tapping the TeraFLOP
Potential of GP-GPU for
High-Performance
Computing Applications

Dr. Brooks Moses,

Sourcerer, Mentor Graphics

Dr. Gil Ettinger,

Consultant, Sensor Exploitation R&D

Eran Strod,

Curtiss-Wright Embedded Computing

Outline

• GPU Overview and Benchmarks

Dr. Brooks Moses, Sourcerer, Mentor Graphics

• Image Processing Algorithms

Dr. Gil Ettinger, Consultant, Sensor
Exploitation R&D

• Hardware for Embedded GPUs

Eran Strod, System Architect, Curtiss-Wright

Android is a trademark of Google Inc. Use of this trademark is subject to Google Permissions.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Brooks Moses

Mentor Graphics

GPU Overview
and

Benchmarks

Objective

What kind of performance can I expect from a GPU,

and what do I have to do to get it?

Background Application

Mentor Embedded’s Sourcery VSIPL++ library

• Cross-platform API for signal, vector, and image

processing.

• Encapsulated data model (handles storage, locality, etc.)

Development questions in producing our Sourcery

VSIPL++ for NVIDIA CUDA port:

• What functions execute on the GPU, and when?

• How do we manage data locations for best performance?

• How do we make this all transparent to the user?

GPU Architecture

Intel Core i7 CPU
(Source: Intel) NVIDIA Fermi GPU

(Source: NVIDIA)

• Four independent cores • Sixteen 32-core “streaming

multiprocessors”

GPU Architecture

• Each Streaming Multiprocessor (SM) has one

instruction decoder for all 32 cores.

• Thus: Groups of 32 threads (called “Warps”) execute in

lockstep.

• SMs use hardware multithreading to overlap multiple

warps and hide latency.

• Sets of Warps on an SM (called “Blocks”) can share local

memory.

• Can execute hundreds of Blocks simultaneously.

• Limited number of programs (called “Kernels”) executing

concurrently: 4 on Fermi, 1 on older GPUs.

NVIDIA CUDA

CUDA (“Compute Unified Device Architecture”):

• An API for general-purpose GPU programming

• NVIDIA proprietary solution, but very popular

• Main competitor is OpenCL.

• Includes a C-like language for writing GPU kernels

Comparing CPU and GPU Performance

Processors used for comparison:

x86: Intel Core i7 (Nehalem), 4 cores (hyperthreaded),

3.2 GHz, peak performance of 102.4 GFLOPS/s.

CUDA: NVIDIA Tesla C1060, 240 cores, 1.3 GHz,

peak performance of 933 GFLOPS/s.

(GFLOP/s = 109 floating-point operation per second)

Note: This is previous-generation technology; current

versions of both are about 2x faster.

Comparing CPU and GPU Performance

• Benchmarking program choice is important!

• Many GPU benchmark results show more than 100x
performance improvement.

• With only 10x more GFLOP/s, is this believable?

• Typically, this is a comparison to an unoptimized, non-
vectorized, single-threaded CPU implementation.

• Realistic comparisons require high-quality
implementations on both CPU and GPU.

• E.g., Intel’s IPP library vs. NVIDIA’s CUBLAS library.

Oversimplified model of a GPU

• GPU cores are effectively a “SIMD unit” (Single Instruction,
Multiple Data) with flexible data width, masking, etc.

• PCI Express bus and GPU cores are key pieces for
understanding GPU performance.

CPU

System Memory PCI Express Bus GPU Device Memory

“Very wide SIMD unit”

Local Store

L1, L2, L3 cache

Performance

What does the performance of this GPU-core “SIMD
unit” look like?

Best performance cases:

• Large amounts of data

• Every element of data touched

• Identical operations (with masking) on each piece of
data.

Start with a simple example: A = B * C (with vectors)

Elementwise Vector Operations

0.01

0.1

1

10

100

1000

10000

1 16 256 4096 65536 1048576T
im

e
 p

e
r

it
e

ra
ti

o
n

 (
m

ic
ro

s
e

c
o

n
d

s
)

Number of points (complex<float> data)

Elementwise Function Timings

vmul (x86)

Execution Time

(Smaller is better)

Number of Points

Log-Log Plot

Elementwise Vector Operations

0.01

0.1

1

10

100

1000

10000

1 16 256 4096 65536 1048576T
im

e
 p

e
r

it
e

ra
ti

o
n

 (
m

ic
ro

s
e

c
o

n
d

s
)

Number of points (complex<float> data)

Elementwise Function Timings

vmul (x86)

L3 Cache Boundary

L2 Cache Boundary

Elementwise Vector Operations

0.01

0.1

1

10

100

1000

10000

1 16 256 4096 65536 1048576T
im

e
 p

e
r

it
e

ra
ti

o
n

 (
m

ic
ro

s
e

c
o

n
d

s
)

Number of points (complex<float> data)

Elementwise Function Timings

vmul (x86)

vmul (CUDA)

Performance

Key observations:

• Large fixed cost (~5 microseconds) for initiating an
operation and executing one instruction.

• Above 16k points, execution time is proportional to
size.

• GPU is faster with 8k or more points.

• Best performance is about 10x the CPU
performance.

These results are typical for other, more complicated
operations that fit the same criteria.

Matrix Transposition

0.1

1

10

100

1000

10000

100000

4096 32768 262144 2097152 16777216T
im

e
 p

e
r

it
e

ra
ti

o
n

 (
m

ic
ro

s
e

c
o

n
d

s
)

Number of points (complex<float> data)

Matrix Transpose Timings

mtrans (x86)

mtrans (CUDA)

Matrix Product

1

10

100

1000

10000

100000

1000000

4096 32768 262144 2097152 16777216T
im

e
 p

e
r

it
e

ra
ti

o
n

 (
m

ic
ro

s
e

c
o

n
d

s
)

Number of points (complex<float> data)

Matrix Product Timings

mprod (x86)

mprod (CUDA)

Fast Fourier Transform

0.1

1

10

100

1000

10000

100000

512 4096 32768 262144 2097152T
im

e
 p

e
r

it
e

ra
ti

o
n

 (
m

ic
ro

s
e

c
o

n
d

s
)

Number of points (complex<float> data)

FFT Timings

fft (x86)

fft (CUDA)

System and Device Memory

Memory structure affects performance:

• CPU can only use data from system memory

• GPU can only use data from device memory

• Data is transferred between them via the PCI-E bus

How does this need for data transfer affect

performance?

Back to the A = B * C example.

Elementwise Vector Operations

0.01

0.1

1

10

100

1000

10000

100000

1 16 256 4096 65536 1048576T
im

e
 p

e
r

it
e

ra
ti

o
n

 (
m

ic
ro

s
e

c
o

n
d

s
)

Number of points (complex<float> data)

Elementwise Function Timings

vmul (x86)

vmul (CUDA)

vmul (CUDA, data transfer)

Conclusions and Recommendations

Performance of GPUs varies with algorithm, data size

What works well on a GPU?

• Algorithms with large SIMD-like operations

• Data sizes greater than 4k elements

• Same operations (with masking) executed on all elements

Expected best performance: Typically 3x to 10x faster

than CPU on algorithms that work well on GPU.

Conclusions and Recommendations

Data transfers from CPU to GPU are costly.

For optimal performance, minimize data transfers:

• Large blocks of algorithm should be executed entirely

on the GPU:

• Thus, need GPU implementations of all operations within

that block of algorithm. Not just core inner loops!

• Use libraries to minimize development time.

• NVIDIA, CuBLAS, CuFFT, Thrust, etc.; CULAtools.

• Sourcery VSIPL++ provides portable wrapper around all of

these.

Sourcery VSIPL++

How does Sourcery VSIPL++ make this easy?

Separation of algorithm and implementation:

• Encapsulated data objects

• Move data between CPU and GPU automatically as

needed.

• Provides logging of when tranfers occur and transfer time.

• Portable function call syntax

• Wraps best-of-class CUDA, CULA libraries and CPU

libraries, along with providing additional operations.

• Functions execute on CPU or GPU for best performance

depending on data size and current location.

Image Processing for Video-based
Scene Understanding

Opportunities for GP-GPU Parallelization of Image
Processing Operations

June 15, 2011

Gil Ettinger

ettinger@alum.mit.edu

Image Processing for Video-based
Scene Understanding

Image Processing Challenges:
• Detect and geo-locate movers – even if very small
• Maintain ID on movers – even if moving slowly, in dense traffic, or partially occluded
• Filter spurious motion – such as smoke or natural clutter
• Interpret complex scenes with wide range of stationary and moving objects
• Automate processing for real-time exploitation of high bandwidth data streams

Generalized Processing Flow for
Video-based Scene Understanding

Object
Characterization

& Association

Moving Object
Tracking

Spatio-temporal Object History

Moving Object Detection Foreground Objects

Scene Modeling 3D Context

Activity Detection Object & Scene Relationships

Geo-registration World Coordinates

Frame Alignment Image Mosaic’s

Image Processing Algorithms (2)

• Geo-registration:
– Align (periodic) ortho-projected frames

to reference ortho-image/map

– Approaches:
• Point Feature (e.g., corner (gradient-intensive)) Alignment

• Edge Feature (gradient-intensive) Alignment

– Computational Complexity:
• Touch large number of pixels – subset of pixels in subset of

frames

• Transform search often performed hierarchically

• Non-linear optimization requires less distributed processing

Google

Image Processing Algorithms (3)

• Scene Modeling:
– Extraction of 3D scene

models (and other
contextual information)

– Approaches:
• Shape from Shading/Texture (non-linear least-squares

optimization)
• Shape from Motion (surface/volume evolution via global

photoconsistency/visibility optimization)

– Computational Complexity:
• Touch all pixels in subset of frames
• Global optimization can be performed distributively on

scene patches

Google

Image Processing Algorithms (4)

• Moving Object Detection:
– Identification of moving

vehicles, people
(and separation from other
spurious motion)

– Approaches:
• Background Subtraction (statistical background modeling)
• Optical Flow Segmentation (gradient feature matching)

– Computational Complexity:
• Touch all pixels in all frames
• Reliable detection requires multi-frame analysis/learning
• High degree of data parallelism

Google

Image Processing Algorithms (5)

• Moving Object Tracking &
Association:
– Continuous maintenance of

object ID through space and time
– Approaches:

• Kinematic Tracking:
– Multiple Hypothesis Tracking

(bounded search)
– Particle Filtering (probabilistic modeling)

• Object Appearance Association:
– Intensity Correlation (sum of pixel intensity products)
– Feature Association (gradient matching)

– Computational Complexity:
• Touch all detections in all frames
• Number of associations (hypotheses) grows polynomially with detections
• Reliable tracking requires multi-frame analysis and leveraging of site context
• Tracking is generally a centralized process, but underlying object association

functions are parallelizable

Image Processing Algorithms (6)

• Activity Detection:
– Identify actions and events performed by individuals or groups

of vehicles and/or people
– Approaches:

• Space-time Local Feature Trajectory Classification:
Intensities, Gradients, Corners

• Space-time Feature/Object Relationship Classification
• Model-based Constrained Search
• Multi-sensor Fusion: Audio, Multi-spectral, Multi-look

– Computational Complexity:
• Scene relationship finding requires touching most pixels, not just object

detections and tracks
• Feature extraction complexity is highly variable
• Activity hypothesis search can involve search through high dimensional

space

Deployment of GPUs

June 15, 2011

Eran Strod

eran.strod@curtisswright.com

1

Target Deployments

•Data Exploitation
•Image Processing
•SIGINT / EW
•Radars

Platform Architectures

1

Switch

Fabric Interface

Foundation Software and System Services

Data Movement Middleware

Numeric Libraries and Stacks

Applications

A/D

Fabric Interface Fabric Interface Fabric Interface

MEZ MEZMEZ

To
o

ls

GP-GPU

Sensor

VPX Connectors

6/19/2011 1

P0 = 8 wafers
P1 = 16 wafers

P2 = 16 wafers

P3 = 16 wafers

P4 = 16 wafers

P5 = 16 wafers

P6 = 16 wafers

Alignment and Keying
Blocks (3) also provide
safety ground

Expansion Plane

• Tightly coupled groups of boards and I/O
– Typically PCI Express x8

Payload

slots
Switch/Management

Payload

slots

Expan

Plane

Expan

Plane

Expan

Plane

Expan

Plane

Expan

Plane

Expan

Plane

Expan

Plane

Expan

Plane

Data

Plane

Data

Plane

Data

Plane

Data

Plane

Data

Plane

Data

Plane

Data

Plane

Data

Plane

Data

Switch

Data

Switch

Contrl

Plane

Contrl

Plane

Contrl

Plane

Contrl

Plane

Contrl

Plane

Contrl

Plane

Contrl

Plane

Contrl

Plane

Contrl

Switch

Contrl

Switch

ChMCIPMC IPMC IPMC IPMC IPMC IPMC IPMC IPMCChMC

1

About MXM

• MXM is the Mobile PCI Express Module. A
standard form-factor for low-power, small form-
factor applications

• Typical applications are laptop computers, blade
and rack-mount servers.

• Thermal solution is customized for the end
application

• Supports GPU devices up to approx 75W. Up to
16-lane PCIe

• Newest MXM version 3 type B modules

• http://www.mxm-sig.org/

MXM

MXM

Module Architecture

6/19/2011 1

Switch

GPU Base Configurations

6/19/2011 1

SBC GPU

Mez

Mez

SBC GPU

Mez

Mez

Two 8x PCIe
P2

Expansion Plane
Two 8x PCIe Ports

Two 8x PCIe
P2

1 2 3 4

Data Plane Full Mesh

SBC GPU

Mez

Mez

SBC

Mez

Mez

Two 16x PCIe P2

Expansion Plane
Two 16x PCIe

1 2 3

SBC GPU

Mez

Mez

SBC GPU

Mez

Mez

M
X
M

M
X
M

M
X
M

M
X
M

8x PCIe
P2

8x PCIe
P2

8x PCIe
P2

8x PCIe
P2

SBC

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5

4x SRIO 4x SRIO

4x SRIO

Mez

Standard Open VPX Expansion Plane

M
X
M

M
X
M

M
X
M

M
X
M

M
X
M

M
X
M

Scaling Up

6/19/2011 1

SBC GPU

Two 8x PCIe
P2

Expansion Plane
Two 8x PCIe Ports

1 2
SBC GPU

Two 8x PCIe
P2

3 4
SBC GPU

Two 8x PCIe
P2

5 6
SBC

7 8 9 10 11 12 13 14
S

W
I
T
C
H

S
W
I
T
C
H

GPU SBC GPU

Two 8x PCIe
P2

SBC GPU

Two 8x PCIe
P2

SBC GPU

15 16

Two 8x PCIe
P2

Two 8x PCIe
P2

Open VPX BKP6-CEN16: (14 Payload + 2 Switch)

AFT Cooling Heat Path

6/19/2011 1

HEAT SOURCE

Rthermal interface

Rconvection

Rcase

Air Inlet

Rconvection

HEAT SOURCE

Rthermal interface

Rheatsink
Rcontact

Rchassis

Rcase

Temperature rise is already too high

before heat gets to card edge using

standard conduction card approach

Conduction Cooling

AFT Cooling - VITA 48.5

AFT Exploded View

6/19/2011 1

HEAT FRAME, TOP

HEAT FRAME,
BOTTOM

PMC ADAPTER CARD

REAR COVER

AFT MODULE DAUGHTER
CARD

PMC
CARD

FRONT COVER

AFT Module Features

6/19/2011 1

Questions?

Seminar

Handout

Seminar

Handout

