Technical Seminar The Long Island Chapters of the 1888 ABSS, APS and SPS

Target Detection Using Optical Soint Transform Correlation

Mohammed Nazrul Islam Senior Member, IEEE

State University of New York Farmingdale, New York 11735

Outline of Presentation

- Target detection/Pattern recognition
- Optical pattern recognition technique
- Optical joint transform correlation (JTC) techniques
- Modified and efficient JTC technique
- Color pattern recognition
- Hyperspectral pattern recognition
- Conclusions

Pattern recognition

- Identification of prescribed targets/ objects from an arbitrary input scene
- Primary information used as reference: spatial features (shape) of the desired object
- Basic technique employed: correlation
- Recognition result is provided as correlation peaks

Correlation output

Pattern recognition

Applications

- Target identification
- Target tracking and motion analysis
- Machine parts recognition in industry
- Character recognition
- Face detection
- Finger print detection
- Medical imaging
- Meteorology
- Robotics
- Security systems

Pattern recognition

Requirements

- No false positive (reject any non-target objects in the input scene)
- No false negative (don't miss any target object in the input scene)
- Sharp discrimination between target and nontarget objects
- Fast operation for real-time applications
- Real-time pattern recognition
 - Optical joint transform correlation (JTC)

Optical image processing

- Optoelectronic implementation can enhance the speed and efficiency of pattern recognition performance significantly
- Optoelectronic equipment
 - Laser
 - Light source (carrier signal)
 - Lens
 - Focusing
 - Fourier transformation
 - Spatial light modulator (SLM)
 - Light modulation
 - CCD camera
 - Computer

Optical lens

- Fourier transformation by lens
 - Input image placed at the focal plane
 - Transformed image displayed at the other focal plane

Lens

f

Features

Coherent

light

- Operation at light speed
- Parallel transformation
- Bi-directional operation

Input

image

Vanderlugt correlator

- First optical correlation technique
 - A linear space-invariant filter needs be matched to reference image
 - Real-valued signal is resulted at the center for a matching

Limitations

- Filter be matched
- Filter be aligned accurately in optical axis
- Accurate positioning of the filter

 Input and reference images are placed sideby-side and illuminated using an SLM

t(x,y) y_0 -• x $-y_0^$ r(x,y)

y

r(x,y): reference image, t(x,y): input image

 Lens performs Fourier transformation of the joint image

 Joint power spectra is recorded by a CCD camera

Joint power spectrum (JPS): magnitude of Fourier transform

$$J \langle \mathbf{u}, v \rangle = |F \langle \mathbf{u}, v \rangle^{2} = F \langle \mathbf{u}, v \rangle F^{*} \langle \mathbf{u}, v \rangle = |R \langle \mathbf{u}, v \rangle^{2} + |T \langle \mathbf{u}, v \rangle^{2}$$
$$+ |R \langle \mathbf{u}, v \rangle T \langle \mathbf{u}, v \rangle \exp i \phi_{r} \langle \mathbf{u}, v \rangle - j \phi_{t} \langle \mathbf{u}, v \rangle \exp \langle \mathbf{u}, v \rangle^{2}$$
$$+ |R \langle \mathbf{u}, v \rangle T \langle \mathbf{u}, v \rangle \exp i \phi_{r} \langle \mathbf{u}, v \rangle + j \phi_{t} \langle \mathbf{u}, v \rangle \exp \langle \mathbf{u}, v \rangle^{2}$$

y

Lens performs inverse Fourier transformation

Inverse Fourier transform of JPS: correlation signal

$$j(\mathbf{x}, y) = r(\mathbf{x}, y) \oplus r(\mathbf{x}, y) + t(\mathbf{x}, y) \oplus t(\mathbf{x}, y)$$
$$+ r(\mathbf{x}, y + 2y_0) \oplus t(\mathbf{x}, y + 2y_0)$$
$$+ r(\mathbf{x}, y - 2y_0) \oplus t(\mathbf{x}, y - 2y_0)$$

 \oplus : correlation

Lens performs inverse Fourier transformation

y

Optical jtc Architecture

- Collimating lens yields coherent and parallel light
- Reference and input images are fed to spatial light modulator (SLM) which modulates the incoming light accordingly
- Fourier lens performs
 Fourier transformation
- CCD camera records the magnitude spectrum
- JPS signal is fed to SLM
- Inverse Fourier transformation of JPS produces the correlation output

Optical jtc features

- Advantages
 - Does not require complex filter fabrication
 - Reference image can be updated in real time
 - Reference image and unknown input image are processed simultaneously
 - No requirement of precise positioning
- Problems/limitations
 - Zero-order correlation
 - Pair of correlation signals for each object
 - Wide side lobes
 - Poor discrimination between target 615 non-target objects
 - Spatial inefficiency

Optical jtc performance

- Strong zeroorder correlation term even in case of mismatching
- Zero-order term overshadows desired correlation terms

Optical jtc modifications

- JTC with power spectra subtraction
- Phase-encoded JTC
- Phase-encoded and phase-shifted fringe-adjusted JTC

jtc with Power spectra subtraction

- Power spectrum of referenceonly image and that of input-only image are measured and then subtracted from the JPS signal
- Zero-order correlation term is removed

jtc with Power spectra subtraction

- Problems
 - Slow operation
 - Duplicate correlation
 - Wide side lobes

Phase-encoded jtc

Input scene is phase-encoded:

$$t_i \mathbf{v}, y = t \mathbf{v}, y \mathbf{v} \mathbf{\phi} \mathbf{v}, y$$

Correlation output:

$$e(\mathbf{x}, y) = r(\mathbf{x}, y) \otimes r(\mathbf{x}, y) + t_i(\mathbf{x}, y) \otimes t_i(\mathbf{x}, y) \otimes \phi(\mathbf{x}, y)$$

+ $r(\mathbf{x}, y - y_0 - y_i) \otimes t_i(\mathbf{x}, y - y_0 - y_i) + r(\mathbf{x}, y + y_0 + y_i) \otimes t_i(\mathbf{x}, y + y_0 + y_i) \otimes \phi(\mathbf{x}, y)$

Phase-encoded itc

- Slow operation
 - Phase-encoding of input scene
- Wide side lobes
- Sensitive to noise
- Worse performance for input scene having large number of objects

Phase-encoded & shifted fringe-adjusted jtc

Phase-encoded & shifted fringe-adjusted jtc

 Phaseencoded reference image is processed in two channels

 0° phase shift
 180° phase shift

 Input image is

introduced to both channels

Phase-encoded & shifted fringe-adjusted itc

Phase-encoded & shifted fringe-adjusted jtc

Phase-encoded & shifted fringe-adjusted jtc

- Reference image phase-encoded
 - Distributed all over the image plane
 - Does not require the reference image be separated from the input scene
 - Location of target can easily be identified

Psfitc Performance

- Features:
 - Single correlation peak for each target
 - Delta-like correlation peak
 - Negligible correlation for non-target objects
 - Simultaneous detection of multiple target objects
 - Class-associative detection
 - Multiple reference classes of targets
 - Parallel processing fast operation
 - Spatially efficient
 - Optoelectronic implementation
 - Real-time system

- Gray image:
 - Intensity varying gradually from black to white
- Gray target detection:
 - Successful recognition of all targets
 - Rejection of any non-target objects

Psfitc Performance

- Class-associative target detection:
 - Multiple reference class objects
 - Detection of all targets corresponding to every reference class at the same time
 - No false alarm
 - No target is missed
 - No non-target is detected

- Class-associative target detection in noisy environment:
 - Noisy environment
 - Illumination variation
 - Foggy weather
 - Efficient and successful target detection

Real-life image:

- Boat in water background
 - Trees and other background objects
- Sharp correlation peak with almost zero false signals

Synthetic discriminant function

• δ : relaxation factor

Training images

- Out-of-plane rotation:
 - Boat appears in different orientations
 - Successful detection of target boat in any orientation

- Noisy input scene:
 - Foggy weather
 - Successful detection performance
 - Very low noisy signal in the correlation plane
 - Very high discrimination between target and non-target objects

Non-target boat:

- Negligible correlation signal
 - Successful rejection of non-target objects

- Complex scenario:
 - Multiple target as well as non-target boats
 - Successful detection of all target boats
 - Rejection of all non-target boats

- Target face is recognized with a sharp correlation peak
- Non-target faces are rejected with negligible peaks
- High discrimination between target and non-target faces

Location of target face can also be determined

- Multiple reference faces can be recognized simultaneously
- High discrimination between target and non-target faces

Distortion-Invariant Face Recognition

Training face images

SDF image

Distortion-Invariant Face Recognition

 Multiple target faces with pose and mood variations can efficiently be recognized

Joint Input image

Reference SDF face

Face Recognition in Noisy Elvironment

- Noisy input scene simulates practical recording conditions
- Target faces are still distinguishable from others

Color pattern recognition

- Pattern recognition performance can be enhanced by including color information in addition to spatial properties of the targets
- Color information basically includes three components, red, green and blue

Color pattern recognition

 Color pattern recognition techniques involve separation of the red, green and blue components

- Three individual and parallel correlation processing are carried out on the three color components
- Individual pattern recognition decisions are fused together to obtain the final correlation decision about the presence of any target

Color pattern recognition

- Target detection performance is sensitive to shape as well as color
- Top car on right hand side produces very small peak though it has the same spatial shape
- The noisy input simulates real life picture where also the pattern recognition technique works efficiently

Multispectral pattern recognition

- Color processing introduces three components of the same spatial information to enhance the correlation decision
- To further enhance the pattern recognition performance, it can be extended to multiple spectral components
- Multispectral remote sensors have been developed to record the image at different frequency bands
- Multispectral imagery yields spectral information in addition to the spatial information for pattern recognition purpose

Multispectral pattern recognition

- Multispectral pattern recognition may also fail for images having very little spatial information, especially when recorded from a long distance using satellite or unmanned air vehicle
- It is necessary to derive a continuous spectral characteristics about the targets for such applications

Hyperspectral Image Processing

Hyperspectral sensors

 Hyperspectral sensors record the spectrum of sunlight that is diffusively reflected by test materials

 An optical dispersing element
 splits the reflected light into many narrow, adjacent wavelength bands

Hyperspectral sensors

- The energy in each band is measured by a separate detector
- Therefore, hyperspectral imagery contains images derived fror the reflected light from a test area in hundreds or even thousands of narrow and adjacent

 Hyperspectral imaging produces a three-dimensional data structure, referred to as image/data cube

- Image size= x y z
 - *x*, *y* : spatial dimensions (corresponding to aperture size of sensor/camera)
 - z : spectral dimension (corresponding to bandwidth of the sensor/camera)
- Typical wavelength range: 0.4 2.5 μm (visible through middle infrared)
- Typical wavelength spacing: 0.01 μm

Hyperspectral imagery

- Hyperspectral imaging:
 - continuous spectrum for each image pixel
 - high resolution in both the spatial and spectral domain
 - Each pixel is represented by its reflectance characteristics over different wavelength bands, called the spectral signature

Ref: "Introduction to Hyperspectral Imaging", TNTmips®

• The spectral signature can also be viewed as a vector in the *n*-dimensional space, where *n* is the number of spectral bands

Hyperspectral image processing

- A pixel vector is formed from the spectral information of each pixel
- Each pixel vector is correlated with the field or laboratory reflectance spectra of the material of interest

Hyperspectral image processing

The whole image is scanned and the correlation output gives the detection results

Hyperspectral image processing

Challenges:

- Very few pixels of target
- Huge data size
- Uniqueness of signature
- Mixed pixel
- Spectral signature of the same material varies due to
 - variation of material surface
 - variation of atmospheric conditions
 - addition of noise

1-D PSFJTC technique

1-DPSFJTC technique

- Target signature produces sharp and single peak
- Non-target signature produces noisy signals
- Targets can easily be distinguished from non-targets and background

1-DPSFJTC technique

- Input scene of the first hyperspectral dataset is shown
- Truth mask: shows the location and number of pixels of targets in the input image
- Ten targets were placed at different locations
- All the targets are detected successfully
- No false alarm
- Discrimination
 between the target
 and the background
 is excellent

Truthmask

Target Detection/M.N.Islam De

m December 7, 2011

Input scene

1-DPSFJTC technique

- Input scene of the second hyperspectral dataset is shown
- Ten targets were placed at different locations
- All the targets are detected successfully
- No false alarm
- Discrimination between the target and the background is excellent

Input scene

Target Detection/M.N.Islam

Truthmask

December 7, 2011

1-D PSFJTC technique

In applications to agriculture and other fields, there is no specific target, rather it is to detect specific material substance • Example: detection of

conclusions

- Optical pattern recognition is based on joint transform correlation
- Phase-encoded and phase-shifted fringe-adjusted joint transform correlation offers the following excellent features:
 - parallel processing of reference and input scene images
 - single delta-like correlation peak for each potential target
 - almost zero correlation for any non-target objects
 - high discrimination between targets and non-targets
 - simultaneous detection of multiple targets of multiple reference classes
 - fast operation suitable for real-time applications
 - efficient use of space-bandwidth resources
 - position of target can also be determined
 - multiple targets of multiple reference classes can be recognized simultaneously

conclusions

- Hyperspectral imagery provides with additional dimension for pattern recognition
- PSFJTC technique is equally successful for hyperspectral pattern recognition purposes

Selected Journal Publications

- "Optical cryptographic system employing multiple reference-based joint transform correlation technique," Optical Engineering, 2011.
- » "Distortion-invariant pattern recognition using synthetic discriminant function based multiple phase-shifted reference fringe-adjusted joint transform correlation," Optics Communications, 2011.
- Automatic fingerprint recognition employing optical phase-modulated joint transform correlation," Applied Security Research, 2010.
- > "Distortion-invariant boat detection using synthetic discriminant function based shifted phase-encoded joint transform correlator," Optical Engineering, 2008.
- "Target detection using adaptive progressive thresholding based shifted phase-encoded fringe-adjusted joint transform correlator," International Journal of Electrical, Computer and Systems Engineering, 2008.
- "Hyperspectral target detection using Gaussian filter and post-processing scheme," Optics and Lasers in Engineering, 2008
- > "Pattern recognition in hyperspectral imagery using one-dimensional shifted phase encoded joint transform correlation." Optics Communications, 2008.
- Optical security system using shifted phase-encoded joint transform correlation," Optics Communications, 2008.
- "Invariant Bangla character recognition using a projection-slice synthetic-discriminant-function-based algorithm," Istanbul University Journal of Electrical and Electronics Engineering, 2006.
- > "Class-associative color pattern recognition using shifted phase-encoded joint transform correlation," Optical Engineering, 2006.
- "Enhanced class associative generalized fringe-adjusted joint transform correlation for multiple target detection," Optical Engineering, 2006.
- Shifted phase-encoded fringe-adjusted joint transform correlation for multiple target detection," Optics Communications, 2005
- "Distortion-invariant multiple target detection using class-associative joint transform correlation," Optical Engineering, 2005.
- "Design of a gain-adjustable filter based joint transform correlator," Journal of Information and Communication Technology, 2004. y.

Contact: islamn@farmingdale.edu