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Overview

� Nonlinear Modeling 

� Thermal and Trap Issues

� MESFET and PHEMT Modeling

� MOSFET Modeling

� HBT Modeling 

� Behavioral Modeling of Amplifiers

� References 
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Motivation/Need for 

Non-Linear Models for PA Design

� The demand of accurate models

� Accurate models can predict precisely the performances of RF 
circuit designs – yet challenges remain! 

� PA Design has become more complex in terms of competing multi-
dimensional requirements of BW, efficiency, linearity and power 
performance.

� Electro-thermal effects often a critical issue for accurate HPA  modeling

� Requirement of Isothermal measurements

� Self-heating effects held constant 

� Some applications (GSM, radar) required pulsed operation.
� Advance model testing

� Wireless systems use various digital modulation signals.

� Are currently available models adequate for emerging requirements?
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Nonlinear Modeling

� Device behavior is different under large-

signal conditions than for small-signal 

conditions.
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Source of PA Nonlinearities 
Example BJT 

Device
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Basic Nonlinearities of PAs

� Frequency generation

� Intermodulation

� AM-AM and 

AM-PM conversion

� Spectral spreading



8

PRECISION MEASUREMENTS AND MODELS YOU TRUST

NL Transistor Modeling Process
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TMFreescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective 

owners. © Freescale Semiconductor, Inc. 2006.
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Schematic Representation
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• Accurate simulation and measurements are required.

• Shell representation of packaged entire transistor.

Schematic Representation of 

Power FET

Used with permission from Peter Aaen of Freescale



Inside an RF Power Transistor

Transistors

Gate Lead

Drain Lead

MOS capacitors

Flange

Integrated
capacitor

Ceramic
substrate

Array of
bonding-wires

� This packaged transistor operates at 2.1 GHz and is 

capable of producing 170 W (CW) output power.

500 mil

Used with permission from Peter Aaen of Freescale
TM
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Test Configuration for NL Transistor 

Model Development  

DUT
(InGaP HBT)

Bias tee Bias tee

Anristu 37369C 

VNA

Keithley 4200 DC 

Parameter 

Analyzer

Agilent  

ICCAP
GPIB connection

RF Wafer Probe 

Station 

Bias force Bias force

sense sense

Pulsed IV Analyzer

DUT
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Extraction of ID Equation

IC-CAP

Setup

Measured (Solid Lines) and Simulated

(Dashed Lines) IV Data:

The quality of the IV 

extraction plays a large part 

in determining the path of the 

large-signal swing in the IV 

plane as well as gain and 

output conductance. 
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80 W MESFET 
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Mextram Model for InGaP HBT 
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Measured (blue) and 

Modeled (red) S-

parameters

ib= 50~200uA in a step of 

50uA and vce= 3V. The 

frequency range is from 0.5 

to 20 GHz with the ambient 

temperature 25°C.

Mextram Model for InGaP HBT 
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Test Configuration for NL

Transistor Model Validation  

DUT
(InGaP HBT)

Tuner TunerBias tee Bias teeRF source
(Agilent E4438C)

Power meter
(Anritus ML 

2438A)

Tuner controller
(MT 986A)

DC power source/

measurement
(Keithley 2430, 
Agilent E4438C)

Maury ATS 

version 4.00 

system

GPIB connection

Note: Can also be performed under pulsed RF conditions with minor 

modifications to setup. 
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80 W MESFET 
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Pulsed Load-Pull – HVVI Device 

“MET” Model

Developed by 

Modelithics
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Pin = 23dBm, Freq = 1200 MHz, Vds

= 28 V, Vgs = 1.65 V.  ΓS= 0.83 < -

98 . In measurement pulse width = 

200us, pulse separation = 2ms. 
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What are the main considerations for non-

linear  Non-linear transistor models?

� Overall measurement accuracy

� Correct calibration

� Repeatability 

� De-embedding model

� RFIV vs. DCIV

� Suitability of model

� equation set (model template) 

limitations/intent

� physically meaningful parameters?

� Model testing/validations

� Conventional - general

� Advanced – application specific

I-V

Model

Parameters

Small

Signal

Model

parameters

Large

Signal 

Model

Parameters

Transistor model parameters

Electro-

Thermal 

Resistances

capacitances

Active 

components

Trap

Effects 
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Pulsed IV Measurement 

� Measurements are performed during brief (~0.2 µs) 

excursions from a quiescent bias.  

� The pulses are usually separated by at least 1 ms.  

� Thermal and trap conditions during the measurement 

are those of the quiescent bias, as in high-frequency 

operation.



21

PRECISION MEASUREMENTS AND MODELS YOU TRUST

Pulsed IV system AU4550

AU4550

Pulser

Pulser

DUT

For a demo, please visit the hospitality room at the Embassy 

Suites, across the street, from Tuesday to Thursday.

June 16, 2008 2008 IMS Workshop 23

From Yusuke Tajima, used with permission.
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Why Pulsed IV?

1. Thermal    2  Field induced traps

Quiescent condition 0Vd, 0Vg Quiescent condition 6Vd,-4Vg

Pulsed IV data of a pHEMT at different quiescent conditions
June 16, 2008 2008 IMS Workshop 24
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Electrothermal “Circuit”

Pd

-

+ CthRth

Ta

Tc

th

th

th
R

C
τ

=

ADthC TPZT +=









=

th

thth
Cj

RZ
ω

1
//

As ω�0, Zth�Rth

As ω�large, Zth�0



24

PRECISION MEASUREMENTS AND MODELS YOU TRUST

Trapping Effects

� Trapping Effects in MESFETs*:

� Substrate Traps

� Surface Traps

� Electron Capture � Fast Process

� Electron Emission � Slow Process
S G D

Electron Flow

Substrate Traps

Surface Traps

*C. Charbonninud, S. DeMeyer, R. Quere, J. Teyssier,       

2003 Gallium Arsenide Applications Symposium,         

October 6-10, 2003, Munich. 
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A Subset of Available FET Model (Templates)

HEMTYes/Yes48CFET [3]

MOSFETYes/Yes40/48/47MOS Level 1/2/3 [1]

LD MOSFETYes/Yes55CMC (Curtice/Modelithics/Cree) [6]

LD MOSFETYes/Yes62MET(Motorola Electro-Thermal) [7]

SOI MOSFETYes/Yes191BSIMSOI3 [9]

MOSFETYes/Yes148BSIM3 (v3.24) [8]

HEMT/MESFETYes/Yes80Angelov [5]

HEMTYes/No71EE HEMT1 [4]

GaAs FETYes/No59Curtice3 [2]

GaAs FETNo/No27JFET [1]

Original Device Context

Bias dependent 

capacitance/ Electro-

Thermal effect

Number of 

parametersFET models
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EEHEMT Large Signal FET Model

� DC and AC behavior 

separated � simpler 

extraction

� Temperature effects 

modeled through 

equations – not 

electro-thermal 

circuit. 
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Angelov Large-Signal FET Model

� Traditional 

single-pole 

electrothermal

subcircuit 

(not shown) 

accounts for 

heating effects

� Available in most 

simulators also 

in Verilog A 
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CFET Model Topology

� Developed by Dr. 

Walter Curtice and 

used by Modelithics.

� Designed for 

GaAs/GaN MESFETs

and HEMTs.
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Non-Linear (EEHEMT) Model for NE 3210 S01

S-Parameter Fits

2V, 20 mA

IV Fits

2-Tone IM Results – 8 GHz  2V, 20 mA

Power Compression – 8 GHz  2V, 20 mA
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MOSFET Modeling

� Motorola’s Electro-Thermal (MET) Model

� Curtice-Modelithics-Cree (CMC) Model

� Both of these models possess traditional 

electrothermal subcircuits.

� Used for Si LDMOSFET, VDMOSFET devices 

� No traps 

� Electrothermal subcircuit and temperature    

dependence extraction are much simpler!
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Curtice-Modelithics-Cree Topology

� The Curtice-
Modelithics-Cree 
(CMC) model is a 
proprietary electro-
thermal LDMOS model

� Four region (4R) 
current model based 
on work of Fager et.al. 
(see IEEE Trans. MTT, 
Dec. 2002)

� The model provides 
accurate predictions of 
power, efficiency and 
distortion performance 
over a wide range of 
devices sizes.

C
dg

C
ds

Gate Drain

Source

R
dsOC

gs

R
in

R
g R

d

R
s

C
max

R
in

C
dd

R
dd

R
th

C
th

Thermal

Circuit

I
th

I
ds

See W. Curtice, L. Dunleavy, W. Clausen, and 
R. Pengelly, ,High Frequency Electronics 
Magazine, pp18-25, Oct.. 2004.

The CMC model is copyright Cree, Inc.

© 2004-2008 all rights reserved. 
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30 W LDMOS Device Modeling

1 2 3 4 5 6 70 8

0.5

1.0

1.5

2.0

2.5

0.0

3.0

VG (V)

G
m
 (
S
)

1 2 3 4 5 6 70 8

1

2

3

4

5

6

0

7

Vg (V)

Id
s
 (
A
)

1 2 3 4 5 6 70 8

0.5

1.0

1.5

2.0

2.5

0.0

3.0

1

2

3

4

5

6

0

7

Vg (V)

G
m
 (
S
) Id

s
 (A

)

Sub-threshold Quad Linear Compression

I II III IV

1 2 3 4 5 6 70 8

0.5

1.0

1.5

2.0

2.5

0.0

3.0

1

2

3

4

5

6

0

7

Vg (V)

G
m
 (
S
) Id

s
 (A

)

Sub-threshold Quad Linear Compression

I II III IV

Sub-threshold Quad Linear Compression

I II III IV



33

PRECISION MEASUREMENTS AND MODELS YOU TRUST
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30 Watt LDMOS Power FET 
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The CMC model is copyright Cree, Inc.

© 2004-2008 all rights reserved. 
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150W Phillips Power Transistor –

Curtice-Modelithics-Cree (CMC) Model 
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The CMC model is copyright Cree, Inc.

© 2004-2008 all rights reserved. 
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Available HBT Model (Templates)

GaAs HBTNo/Yes58Curtice (2004)

GaAs HBTNo/Yes80FBH (2005)

InP/GaAs HBTYes/Yes124Agilent (2003)

GaAs HBTYes/Yes114HICUM (1995)

SiGe HBTYes/Yes

81 

(version 504)Mextram (1987)

SiGe BJTYes/Yes102VBIC (1985)

Si BJTNo/No24GP (1970)

Original Device 

Context

substrate effect / 

self heating

Number of 

parametersBJT models
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Mextram Model for 3x20x2 InGaP HBT 

5.5 GHz power sweep  results at vc= 3V and ib= 100uA. 

Source reflection coefficient Gms= .06522<148.97 (mag<deg); L

Load reflection coefficient Gml= .07354<36.24 (mag<deg). 
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- Constant Base Current vs. Constant Base Voltage -

(See B. Lee, L. Dunleavy ,,” High Frequency Electronics, May 2007.)

-o- line: Mextram 504 model and solid line: measurements

(a) The case of constant base voltage (Vb=1.33V)

(b) The case of constant base current (Ib=89.4uA)
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Behavioral Models
� Empirical models (behavioral models, black-box models)

� Requires no knowledge about the internals of the PA

� Based on the observation of the input-output signal relationships

� Its simulation performance heavily depends on the dataset used for 
the extraction of the model

� It fits well to the given datasets and requires small simulation time; 

� However it may suffer when trying to extrapolate the PA 
performance or fit to different datasets (by that means different PA 
topologies)
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PA Modeling Techniques

� Circuit Level Models (Physical Models)

� Based on the knowledge of the amplifiers’ circuit structure

� Require accurate active device models and other 

components

� The simulation results can be accurate, however, time-

consuming

Accurate 

NL device model 

needed
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“Built-in” ADS Amplifier Models

Amplifie rS2D

AMP1

Inte rpDom=Data  Based

Inte rpMode=Linear

SSfreq=auto

S2DFile="s2dfile .s2d"
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“Built-in” AWR Models
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Capabilities of Built-in Models

� S-parameter, NPar

� Gain compression

� Phase compression

� TOI, etc

� Can use multiple dimensional datasets, including 

nonlinear gain compression information vs bias, 

temperature, frequency, etc

� Can simulate in envelope domain for outputs such 

as ACPR/Spectral spreading
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Frequency-related Memory Effects

Carrier frequency related AM-AM

and AM-PM variation 

Measured results for 

Murata XM5060 PA sample
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Example Approach for Frequency-related 

Nonlinear Effects – ADS Amplifier Model

Simple file driven model constructed 

based on the measured datasets 

at different frequencies.

Simulated output spectrum shows 

the correlation between the 

spectral regrowth and the PA 

performance at different 

frequencies.
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Combined P2d/S2D Model
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P2D/S2D MMIC example (cont)
Triquint TGA8399B MMIC amplifier, bias of 5V, frequency at 11.25 GHz

-10C-10C

25C 60C



48

PRECISION MEASUREMENTS AND MODELS YOU TRUST

Large Signal Scattering Function 

Theory

� Designed to overcome the limitation of the small-signal S-

parameter

� Take into account the fundamental tones as well as the harmonics

� The S-parameters become amplitude-dependent

A2N

DUTPort 1 Port 2

A11 A12 A1N

B12B11 B1N B21 B22 B2N

A21 A22
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Poly-Harmonic Distortion (PHD) 

Behavioral Model (Root et. al.) 

� Recent application of the large-signal scattering function theory 

includes the “PHD Model” which targets the broad-band amplifiers

� It combines the A11-dependent S and T functions to characterize 

the Bpk at different port “p” and harmonic index “k”

� It is implemented in ADS using FDD component and DACs

�D.E. Root, J. Verspecht, D. Sharrit, J. Wood, A. Cognata, “Broad-band poly-harmonic distortion (PHD) 

behavioral models from fast automated simulations and large-sinagl vectorial network measurements”, 

IEEE Trans. Microw. Theory Tech., vol. 53, no. 11, pp. 3656–3664, Nov. 2005.
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12/16/2005

Simplified Large-signal model

(J. Liu et. al.) 

Utilize the large-signal scattering function theory and 

consider the fundamental tone only, we can get a 

simplified model equation shown below:

*

2222221121

*

2222221212

)( LL BTBSAS

ATASASB

Γ+Γ+=

++=

6522

4322

2121

j

j

j

CCT

CCS

CCS

+=

+=

+=
The Cn (n=1 to 6) are the 

model coefficients and should 

be derived from optimizations

Can be  implemented in ADS using FDD component
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Derivation of the model

� The advantage of this model is that it 

depends on readily available load-pull and 

VNA instruments and more available 

measurement processes

� Measurements required to derive this model

� Small signal S-parameters

� AM-AM loadpull measurement, 

� AM-PM loadpull measurement

J. Liu, L.P. Dunleavy and H. Arslan, “Large Signal Behavioral Modeling of Nonlinear 

Amplifiers Based on Loadpull AM-AM and AM-PM Measurements”, IEEE Trans. Microw. 

Theory Tech., vol. 54, no. 8, pp. 3191–3196, Aug. 2006.
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11/07/2005

Simulated Fund. tone and 

IM3 at load b
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From Dr. Steve Maas, used with permission. 
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From Dr. Steve Maas, used with permission. 
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From Dr. Steve Maas, used with permission. 



57

PRECISION MEASUREMENTS AND MODELS YOU TRUST

Summary

� Non-linear device measurement/modeling requires…

� Careful attention to measurement setup/accuracy

� Pulsed multi-temperature testing 

� High current/high power instrumentation and components 

� Advanced non-linear instrumentation (e.g. load-pull) 

� Large signal modeling requires 

� Advanced models (templates)  and extraction techniques.

� Focused expertise that can pull together the varied 

aspects of IV, S-parameter and non-linear test results into 

an effective modeling extraction and validation.

� A measurement/modeling team is best!
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Summary (cont’d) 

� A Good Behavorial Model…

� Needs be created based on measurement datasets 

through instruments available to the modelers. 

� Good News! More advanced non-linear test 

instruments/software are becoming available. 

� Model should be easy to use and no more complex 

than necessary. 

� Powerful enough to present multiple dimensional 

datasets for designers to inspect the amplifier’s 

performance in a system view 

� (Ideally) Model should be supported in popular CAE 

software packages. 
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