User Interface Design: An Introduction and Overview

Joseph A. Konstan
Dept. of Computer Science & Engineering
University of Minnesota
konstan@cs.umn.edu
Topics in User Interfaces

- Understanding Humans -- Psychology
- Human-Computer Interaction
- Design Process and Strategies
- Interface Evaluation
- Tools for Interface Development
- Technology of Interfaces and Tools
Goals for Today

- Overview of Field
- A Sampling of Psychology
- A Design Process -- TCUID
- Some Usability Engineering Issues
- a little pitch for further education …

- Have some fun, play some games!
Psychology

- Human capabilities and limitations
- Perception and cognition
- Implications for UI design

- *Design of Everyday Things*
 by Donald Norman
A Two-Player Game

- Start with the numbers 1 ... 9
- Pick alternatingly without replacement
- A winner has exactly 3 numbers that add up to 15
- If all numbers are used, and nobody wins, it is a draw
A Two-Player Game

<table>
<thead>
<tr>
<th></th>
<th>8</th>
<th></th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Human Capabilities

● Humans are very good at:
 » recognizing (images, voices, etc.)
 » associative memory
 » explaining phenomena

● Humans are very limited in:
 » short-term memory
 » complex, multi-layered tasks
 » perfection
Brain Hemisphere Research

- “Left Brain”
 » methodical, logical, step-by-step
 » symbolic, works with components
 » generally dominant

- “Right Brain”
 » holistic, intuitive, rapid
 » handles missing values
 » works with gestalts
Limits of Human Memory

- **Short-Term Memory**
 - instant recall
 - limited capacity
 - fragile

- **Long-Term Memory**
 - slower recall, depends on organization
 - rote memory vs. relationships vs. explanation
 - “muscle memory”
Models of User Action

- Goals
- Intention to Act
- Action Plan (sequence of action steps)
- Observe State of World
- Interpret State
- Evaluate to form new...
- Change the World
- Execution of Actions
Humans Err

- Humans are not perfect!
- Slips -- errors in automatic actions
 » tied to skilled behaviors
 » easy to detect
- Mistakes -- errors in intention or logic
 » e.g., false generalizations
 » may be hard to detect
Where Does This Put Us?

● The Problem
 » humans are imperfect!!

● Possible Solutions
 » yank them out of the process
 – lose benefits of human strengths
 » design for imperfect users
Put Support into the Interface

- Affordances
- Visibility of Controls
- Feedback
- Conceptual Models
- Mappings

- Information in the World
- Constraints
- Error Avoidance and Handling
- Standardization
Affordances

● What something can be used for
 » a button (or plate) affords pushing
 » a knob affords turning

● Cultural (and learned) affordances
 » a scrollbar affords scrolling
 » various cursors afford operations

● Key: helps the user discover possibilities
 » where would you hide a safe in your house?
Visibility of Controls and Information

- Don’t hide the controls!
 - telephone systems: hold, transfer, etc.
 - VCR programming
- Make status available
 - well-designed display (34% complete)
 - use sound if needed (click/beep/etc.)
- Don’t distract with irrelevant displays
 - dynamics and prominence reflect importance
Feedback

● Don’t hide the results!
● Make feedback immediate
 » did I hit the button? (visual or audio)
 » did I have an effect? (cursor change?)
● Each action should have an effect
 » promote exploration
Conceptual Models

- Rote memorization prevents inference and adaptation
 - users *will* develop conceptual models
 - but they will likely be wrong!

- Models should help people adapt to new situations
 - gulf of execution -- not knowing *how*
 - gulf of evaluation -- not knowing *whether it worked*
Mappings

- Humans infer from mappings
 - layout of light switches in a room
 - controls on a range
- Natural mappings are easiest, but ...
 - avoid mappings that don’t generalize
Information in the World

● Avoid relying on memory alone
 » menus and toolbars
● Support memory aids
 » never require remembering information between screens
● Great precision is not required
Constraints

- Narrow the task search space
- Physical Constraints
- Semantic Constraints
- Cultural Constraints
- Logical Constraints
Error Avoidance/Handling

● Design to prevent slips
 » different things should look different
 » consistent confirmation is useless
 » immediate confirmation can be nearly useless

● Simplify tasks
 » make decision trees narrow or shallow
Error Avoidance/Handling

- Support recovery from errors
 - undo operations and back-up versions
 - support exploration towards a goal
- Prevent errors with forcing functions
 - don’t make illegal operations available
 - disable buttons or menus
 - turn illegal operations into legal ones
Standardization

● If all else fails, ...
 » fewer things to memorize
 » shorter learning time
 » clocks should run clockwise
Examples

- Stove Control Design
- Refrigerator controls
- Light Switches
- One-button slide projectors
- Doors
- Phones
Stove Control Design
Examples

- Stove Control Design
- Refrigerator controls
- Light Switches
- One-button slide projectors
- Doors
- Phones
Refrigerator Controls

NORMAL SETTINGS C AND 5
COLDER FRESH FOOD C AND 6 - 7
COLDEST FRESH FOOD B AND 8 - 9
COLDER FREEZER D AND 7 - 8
WARMER FRESH FOOD C AND 4 - 1
OFF (FRESH FD & FRZ) 0
Examples

- Stove Control Design
- Refrigerator controls
- Light Switches
- One-button slide projectors
- Doors
- Phones
The UI Design Process

- Several processes “promoted”
- Common elements
 » Focus on users
 – tasks, scenarios
 – activities, work context
 – communication
 – personas
Task-Centered User Interface Design

- Identify users and tasks
- Develop tasks into scenarios
- Use tasks/scenarios in design and evaluation

- Based on book by Lewis and Rieman
Users

● Who is going to use the system?
 » if you can’t find a user -- you’re in trouble
 » “everyone” is not a user
 » “the designer” is not a good user

● Go talk with the user
 » too busy?
 – how will they have time to evaluate/use it?
 – are there good surrogate users?
Talking with the Users

- What do they know?
 - systems, skills, etc.
- What do they do?
 - tasks
- How do they do it now?
 - scenarios
- What do they want to do?
 - new tasks
Users Sometimes Bite!

- Users aren’t all-knowing
 - they may not understand the possibilities
 - they may have a very narrow view

- They aren’t designers
 - learn about the tasks from the users
 - use your design skills to create a design
 - get user feedback on the design/prototype
Tasks

- **What is a task?**
 - a specific description of a complete job that specific users want to accomplish
 - not tied to how they would do the job

- **Detailed**
 - some typical details are important

- **Complete job**
 - covers transitions between sub-tasks
Example Task

- Professor Konstan receives a phone call from his department head asking whether he can attend a one-hour meeting the following Friday morning at 9. He should check his calendar, add the meeting unless he is teaching or traveling then, and send e-mail to reschedule any appointments that have to be missed for this meeting.
Why Tasks

- Tasks are fundamental to TCUID
 - determine who actually uses the system
 - sets goals for system functionality
 - basis for system design
 - basis for comparative evaluation
 - basis for user testing
How Many Tasks?

- Depends on nature of problem
 - 3-5 general-purpose tasks for a simple system
 - separate tasks for special-purpose cases (maintenance, installation)
 - 10+ tasks for complex systems
 - depth/quality more important than number of tasks
From Task to Design

- Write-up tasks, circulate among users
 » clarify missing details
- Rough out an interface, using existing systems or designs where possible
- Sketch out how each task would be accomplished in the interface: develop scenarios
Scenarios

● Specific instance of system use
 » for a particular task
 » for a particular interface
 » what would the user do, in detail

● Example
 » double-click on Outlook icon, click the calendar icon, …
Properties of Scenarios

● Interface-dependent
● Detail appropriate to user, task, interface
● Brings forward issues
 » how components work together
 » design arguments
 » tricky parts of the interface
● Guideline to create prototype
Interface Design Strategies

● Find a tool that does all/part of the job
 » don’t write a new spreadsheet -- extend!
 » you won’t live long enough to re-invent Excel
● Work within an existing framework
● Borrow intelligently
 » know why the interactions were selected
 – Mac tool palette vs. menus
● Invent only when absolutely necessary
Interface Prototyping

● Why prototype?
 » easier/cheaper than building & discarding
 » learn about interface problems early
 – before extensive resources committed
 » identify hard parts of the design

● Can you use the final prototype as the product?
 » often
Goals of Interface Prototyping

- Bring out issues that are hard to see in the abstract
- Better gestalt for the interface
- Something to evaluate using heuristics
- Something for users to evaluate
 - informally
 - user testing
Prototyping Techniques

- Functioning Programs
- Stand-Alone Interfaces
- Dedicated Prototypes
- Paper Prototypes
A Surprising Finding

- In many circumstances, sketches work \textit{better than} higher quality prototypes for user evaluation.
 - users feel freer to suggest major changes
 - users focus on high level rather than color, labels, graphical details
 - some groups have generated sketches from high-quality prototypes for focus groups and other user evaluations.
TCUID Summary

● Who is going to do what?
● Choose representative tasks
 » scenario for current systems
● Rough out a design, borrowing where possible
● Think, evaluate
● Create a prototype
● Test it (with and without users)
● Iterate
● Build and maintain it
Interface Development Methodology

• Prototype and Iterate
 » keep iterating until it is good enough
 » evaluate along the way to assess

• What is Good? What is Good Enough?
 » set usability goals
 » should relate to tasks
Evaluation

- Without users
 - walkthroughs
 - heuristic/checklist
 - action analysis

- With users
 - test design/evaluation
Tricky Issues in Usability Engineering

- Not software engineering
 » don’t know requirements or specs
- Prototype/iterate
 » when to stop
- Quantitative usability goals?
Yeah, But Why Should I Care?

- Usability = $$$
 - Support costs
 - Reputation
 - Product reviews
Yeah, But What Can I Do?

- Hire people with HCI/UI background
 - Psych & Computer Science
- Make people aware of issues
- Train people!
 - Good place to pitch courses
Reference Materials

● Courses and Conferences
 » UPA (in two weeks, Scottsdale)
 » CHI 2004 (Vienna); CHI 2005 (Portland)

● Books
 » Highlights -- no system-specific books

● On-line resources
 » Well-connected on the web
Courses and Conferences

● Typical Computer Science Courses
 » UI Design, Evaluation, and Implementation
 » GUI Toolkits and their Implementation
 » HCI and UI Technology
 » Specialty Topics (CSCW, Ubicomp, Wearables, etc.)

● Annual Conferences
 » CHI*, UPA, CSCW, UIST, DIS/DUX, IUI, and many more …
 » see SIGCHI home page for details
References for Further Reading

- *Task-Centered User Interface Design* by Clayton Lewis and John Rieman
- *The Design of Everyday Things* by Donald Norman
- *A Guide to Usability* by Jenny Preece
- *Usability Engineering* by Jakob Nielsen
- *Developing User Interfaces* by Dan Olsen
References for Further Reading

- *Designing the User Interface* (3rd edition) by Ben Shneiderman
- *Human-Computer Interaction* by Jenny Preece et.al.
- *Developing User Interfaces: Ensuring Usability through Product and Process* by Hix and Hartson
- *Cost-Justifying Usability* by Bias and Mayhew
- *Readings in Human-Computer Interaction* (1st and 2nd editions) edited by Ronald Baecker, et. al.
- *Handbook of Human-Computer Interaction* (2 editions, edited by Martin Helander)
References for Further Reading

- *Interactive System Design* by Newman and Lamming
- *Bringing Design to Software* edited by Terry Winograd
- *The Art of Human-Computer Interface Design* by Brenda Laurel
- *The Visual Display of Quantitative Information* by Edward Tufte
- *The Human Computer Interaction Handbook* by Julie Jacko and Andrew Sears
Useful Resources on the Internet

● HCI Reference Pages
 » http://www.usableweb.com/
 » http://www.degraaff.org/hci/
 » http://www.hcibib.org/

● ACM SIGCHI
 » http://www.sigchi.org/

● Usability Professionals Association
 » http://www.upassoc.org/