Using LabVIEW for High Performance Computing

March 4, 2010

Terry Stratoudakis
terry@aleconsultants.com
Agenda

1. What is High Performance Computing?
2. HPC Users
3. HPC Technologies
4. LabVIEW in HPC
5. Case Study: Option pricing on an FPGA
What is HPC?

- Solve advanced computation problems
- HPC is successor of Supercomputing
- Complex event processing
- Parallel computing
Users of HPC

- Bioinformatics
- Cryptography
- Defense
- High Energy Physics
- Finance
- Telecommunications
- You

every time you use Google/search for something, you are a user of HPC!
HPC Technologies

- Grid computing
- Multi-core & specialized processors
- Embedded
- Storage
Grid Computing

- Networked computers working together
- Most existing software cannot run “as is”
- Requires knowledge of parallel programming APIs and languages
- SaaS, Cloud, Cluster
Multi-Core Processors

- Solves temperature issues of 1-core
- Many processors on a chip
- Building block of a grid
- Similar challenges as for grid computing
Specialized Processors

- CPUs too generic
- Optimized for certain calculations
- Examples
 - Graphical Processing Units (GPUs)
 - Digital Signal Processing (DSP)
 - Cell Processors
 - Example: grid of 10 networked Sony PlayStation 3
Embedded HPC

- Field Programmable Gate Arrays (FPGAs)
- Configured with Hardware Description Language
- *True* parallel execution
Storage

- Solid State HD
- RAID Arrays
- Storage Area Networks
LabVIEW in HPC

- Grid Computing – VI Server
- Multicore
 - Parallel For Loops
 - Parallel Loops
 - Parallel Code
- GPU – CUDA interface to LabVIEW
- DSP – LabVIEW DSP Module
- FPGA – LabVIEW FPGA Module
VI Server

1. Create Reference to Object
2. Operate on Properties Or Methods
3. Close Reference to Object
4. Check for Errors

- Open Application Reference
- Property Node
- Close Reference
- Simple Error Handler.vi

- Open VI Reference
- Invoke Node
- Method
• Application reference—Input to property and invoke nodes

• To reference LabVIEW on a **remote computer**, set machine name to TCP/IP address or domain name
LabVIEW on a Grid Example
Multi-core Parallel For Loop
Multi-core Parallel Code
GPU – LabVIEW to CUDA Interface

GPU – LabVIEW to CUDA Interface

FINANCE CASE STUDY

OPTION PRICING ON AN FPGA
Field Programmable Arrays (FPGA)

- Introduced in 1987
- Customizable Integrated Circuit
- Millions of logic gates on a single chip
- Parallel Execution, Low Power Usage
- No Operating System
LabVIEW FPGA Module

- Higher level of Abstraction
 - Reduce FPGA development by 75%

- Add-on to LabVIEW – since 2002

- Used in Defense, Biomedical, Telecom., Manufacturing
HPC to LabVIEW FPGA Process

1. Understand algorithm
 a. Look for ability to parallelize
 b. Identify math functions needed
 - e.g. logarithmic, division, multiply, exp, random numbers)
 - See NI IPNet (www.ni.com/ipnet)

2. Implement in LabVIEW FPGA
 a. **Goal**: run in single-cycled timed loop
 b. Pipelining

3. Test with simulated mode

4. Verification with known data
Black-Scholes Option Valuation

- Published in 1973
- Basis for Quantitative Finance
 - Equity price modeled as stochastic time series
- Pricing of Options and Corporate Liabilities
- Basis for multi-trillion dollar Options Trading
- Computed with a Monte Carlo Simulation

\[dS_t = \mu S_t \, dt + \sigma S_t \, dW_t \]

\[u(x, \tau) = \frac{1}{\sqrt{2\pi \tau}} \int_{-\infty}^\infty u_0(y) e^{-(x-y)^2/(2\sigma^2\tau)} \, dy. \]

\[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{z^2}{2}} \, dz \]

\[dV = \left(\mu S \frac{\partial V}{\partial S} + \frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} \right) \, dt + \sigma S \frac{\partial V}{\partial S} \, dW. \]
Challenge

● Program Black–Scholes Option Valuation:
 – NI Compact-RIO platform (Xilinx FPGA)
 ● Running National Instruments LabVIEW 8.6.1
 – Alienware Area-51 7500 Dual Core
 ● Running Microsoft Visual C# .NET 2.0

● Benchmark
 – Development time
 – Execution time
 – Energy Consumption
Visual C# on Dual-Core PC

- Microsoft Windows Vista Ultimate Edition
- High-Performance Gaming Machine
- 3.0 GHz Intel Core 2 Duo E6850
- SATA RAID-0 10,000 RPM Hard Drives
- 4 GB RAM
- .NET 2.0 Runtime
public GaussianRandom(int seed)
{
 _random = new Random(seed);
 _phase = 0;
}

private int numberOfLoops = 0;

public double GetNextGaussianRandom()
{
 double X;
 if (_phase == 0)
 {
 do
 {
 var U1 = _random.NextDouble();
 var U2 = _random.NextDouble();
 _V1 = 2 * U1 - 1;
 _V2 = 2 * U2 - 1;
 _S = _V1 * _V1 + _V2 * _V2;
 while (_S >= 1 || _S == 0);
 X = _V1 * Math.Sqrt(-2.0 * Math.Log(_S) / _S);
 } while (_phase == 0);
 _phase = 1 - _phase;
 }
 else
 {
 X = _V2 * Math.Sqrt(-2.0 * Math.Log(_S) / _S);
 }
 return X;
}
LabVIEW FPGA – Fixed Point Math
LabVIEW FPGA – Pipelining
Results

- Development times were comparable
- LabVIEW on FPGA ran 59X faster
- LabVIEW on FPGA had 33X energy reduction
- Compact-RIO takes up 1/8 the space

More info at WallStreetFPGA.com
Benefits of LabVIEW FPGA for HPC

- Case Study Results
 - Quick development
 - Energy efficient
 - Fast execution

- LabVIEW for FPGA can be faster than text based programming running on a grid
Based in Long Island, New York – projects nationwide

National Instruments Certified Alliance Partner
 - All developers have National Instruments Certification

Experience:
 - Test Labs, Manufacturers, Mil/Aero, Finance
 - Over 14 Years Test & Automation experience
 - Expertise in variety of instrument manufacturers’ products

Programming:
 - LabVIEW, LabWindows/CVI, TestStand, Visual Studio
Terry Stratoudakis, P.E.

Education/Certifications

- B.S., M.S. in Electrical Engineering, Polytechnic University
- NI Certified LabVIEW Developer and Certified Prof. Instructor
- New York State licensed Professional Engineer

Experience

- Test Engineer at Underwriters Laboratories for six years
- Former Assistant Adj. Prof. at NYC College of Technology
- Co-founder and President of ALE System Integration